scholarly journals Nanoluciferase-Based Method for Detecting Gene Expression in Caenorhabditis elegans

Genetics ◽  
2019 ◽  
Vol 213 (4) ◽  
pp. 1197-1207 ◽  
Author(s):  
Ivana Sfarcic ◽  
Theresa Bui ◽  
Erin C. Daniels ◽  
Emily R. Troemel

Genetic reporters such as the green fluorescent protein (GFP) can facilitate measurement of promoter activity and gene expression. However, animal autofluorescence limits the sensitivity of GFP and other fluorescent reporters in whole-animal settings like in the nematode Caenorhabditis elegans. Here, we present a highly sensitive Nanoluciferase (NanoLuc)-based method in a multiwell format to detect constitutive and inducible gene expression in C. elegans. We optimize detection of bioluminescent signals from NanoLuc in C. elegans and show that it can be detected at 400,000-fold over background in a population of 100 animals expressing intestinal NanoLuc driven by the vha-6 promoter. We can reliably detect signal in single vha-6p::Nanoluc-expressing worms from all developmental stages. Furthermore, we can detect signal from a 1/100 dilution of lysate from a single vha-6p::Nanoluc-expressing adult and from a single vha-6p::Nanoluc-expressing adult “hidden” in a pool of 5000 N2 wild-type animals. We also optimize various steps of this protocol, which involves a lysis step that can be performed in minutes. As a proof-of-concept, we used NanoLuc to monitor the promoter activity of the pals-5 stress/immune reporter and were able to measure 300- and 50-fold increased NanoLuc activity after proteasome blockade and infection with microsporidia, respectively. Altogether, these results indicate that NanoLuc provides a highly sensitive genetic reporter for rapidly monitoring whole-animal gene expression in C. elegans.

2019 ◽  
Author(s):  
Ivana Sfarcic ◽  
Theresa Bui ◽  
Erin C. Daniels ◽  
Emily R. Troemel

AbstractGenetic reporters such as the green fluorescent protein (GFP) can facilitate measurement of promoter activity and gene expression. However, GFP and other fluorophores have limited sensitivity, particularly in tissues that autofluoresce like the intestine of the nematodeCaenorhabditis elegans. Here, we present a highly sensitive Nanoluciferase (NanoLuc)-based method in multi-well format to detect constitutive and inducible gene expression inC. elegans. We optimize detection of bioluminescent signal from NanoLuc inC. elegansand show that it can be detected at 400,000-fold over background in a population of 100 animals expressing intestinal NanoLuc driven by thevha-6promoter. We can reliably detect signal in singlevha-6p::Nanoluc-expressing worms from all developmental stages. Furthermore, we can detect signal from 1/100 dilution of lysate from a singlevha-6p::Nanoluc-expressing adult and from a singlevha-6p::Nanoluc-expressing adult “hidden” in a pool of 5,000 N2 wild-type animals. We also optimized various steps of this protocol, which involves a lysis step that can be performed in minutes. As a proof of concept, we used NanoLuc to monitor promoter activity of thepals-5stress/immune reporter and we were able to measure 300 and 50-fold increased NanoLuc activity after proteasome blockade and infection with microsporidia, respectively. Altogether, these results indicate that NanoLuc provides a highly sensitive genetic reporter for rapidly monitoring gene expression inC. elegans.


2011 ◽  
Vol 22 (15) ◽  
pp. 2716-2728 ◽  
Author(s):  
Erin M. Bank ◽  
Kfir Ben-Harush ◽  
Naama Wiesel-Motiuk ◽  
Rachel Barkan ◽  
Naomi Feinstein ◽  
...  

Mutations in the human LMNA gene underlie many laminopathic diseases, including Emery-Dreifuss muscular dystrophy (EDMD); however, a mechanistic link between the effect of mutations on lamin filament assembly and disease phenotypes has not been established. We studied the ΔK46 Caenorhabditis elegans lamin mutant, corresponding to EDMD-linked ΔK32 in human lamins A and C. Cryo-electron tomography of lamin ΔK46 filaments in vitro revealed alterations in the lateral assembly of dimeric head-to-tail polymers, which causes abnormal organization of tetrameric protofilaments. Green fluorescent protein (GFP):ΔK46 lamin expressed in C. elegans was found in nuclear aggregates in postembryonic stages along with LEM-2. GFP:ΔK46 also caused mislocalization of emerin away from the nuclear periphery, consistent with a decreased ability of purified emerin to associate with lamin ΔK46 filaments in vitro. GFP:ΔK46 animals had motility defects and muscle structure abnormalities. These results show that changes in lamin filament structure can translate into disease-like phenotypes via altering the localization of nuclear lamina proteins, and suggest a model for how the ΔK32 lamin mutation may cause EDMD in humans.


2021 ◽  
Vol 9 (3) ◽  
pp. 343-352
Author(s):  
Rajul Jain ◽  
◽  
Priyanka Gautam ◽  

The ubiquitous use of pesticides all over the world leads to adverse effects on both targets as well as non-target species. The extensive and uncontrolled use of organophosphates (OPs), a large group of pesticidal compounds in agricultural and household products are resulting in high exposure to humans. This research has been carried out to study the adverse effect of OPs i.e., chlorpyrifos, trichlorfon, and disulfoton on model organism Caenorhabditis elegans to evaluate their behavioural as well as developmental toxicity at different time intervals i.e., 4, 24, 48, and 72 hours (hrs) of exposure. A significant difference was observed in all the behavioural endpoints like locomotion, egg-laying, offspring count, and learning along with developmental parameters like mortality, paralysis, and growth rendering from moderate to high toxic effects. Based on the above screening, trichlorfon resulted in glutamatergic and cholinergic neurodegeneration along with elevated autofluorescence. Loss in Yellow fluorescent Protein (YFP) and Green Fluorescent Protein (GFP) was recorded by 57.96% and 30.52% using transgenic strains OH11124 (otIs388 [eat-4(fosmid)::SL2::YFP::H2B + (pBX)pha-1(+)] III) and OH13083 (otIs576 [unc-17(fosmid)::GFP + lin-44::YFP]). These results have shown the biological potency of toxicants in C. elegans and pave the way forward to provide insight into various neurogenerative diseases in humans.


2002 ◽  
Vol 361 (2) ◽  
pp. 221-230 ◽  
Author(s):  
Yusuke KATO ◽  
Tomoyasu AIZAWA ◽  
Hirokazu HOSHINO ◽  
Keiichi KAWANO ◽  
Katsutoshi NITTA ◽  
...  

Two genes encoding the ASABF (Ascarissuumantibacterial factor)-type antimicrobial peptide, abf-1 and abf-2, were identified in Caenorhabditis elegans. Recombinant ABF-2 exhibited potent microbicidal activity against Gram-positive and Gram-negative bacteria, and yeasts. The tissue-specific distribution estimated by immunofluorescence staining and transgenic analysis of a gfp fusion gene (where GFP corresponds to green fluorescent protein) suggested that ABF-2 contributes to surface defence in the pharynx. abf-1 contains a single intron at a conserved position, suggesting that asabf and abf originated from a common ancestor. Both transcripts for abf-1 and abf-2 were detected as two distinct forms, i.e. spliced leader (SL)1-trans-spliced with a long 5′-untranslated region (UTR) and SL-less with a short 5′-UTR. A polycistronic precursor RNA encoding ABF-1 and ABF-2 was detected, suggesting that these genes form an operon. An ‘opportunistic operon’ model for regulation of abf genes, including the generation of short SL-less transcripts, is proposed. In conclusion, C. elegans should have an immune defence system due to the antimicrobial peptides. C. elegans can be a novel model for innate immunity. Furthermore, the combination of biochemical identification in Ascaris suum and homologue hunting in C. elegans should be a powerful method of finding rapidly evolved proteins, such as some immune-related molecules in C. elegans.


1999 ◽  
Vol 10 (12) ◽  
pp. 4311-4326 ◽  
Author(s):  
Barth Grant ◽  
David Hirsh

The Caenorhabditis elegans oocyte is a highly amenable system for forward and reverse genetic analysis of receptor-mediated endocytosis. We describe the use of transgenic strains expressing a vitellogenin::green fluorescent protein (YP170::GFP) fusion to monitor yolk endocytosis by theC. elegans oocyte in vivo. This YP170::GFP reporter was used to assay the functions of C. eleganspredicted proteins homologous to vertebrate endocytosis factors using RNA-mediated interference. We show that the basic components and pathways of endocytic trafficking are conserved between C. elegans and vertebrates, and that this system can be used to test the endocytic functions of any new gene. We also used the YP170::GFP assay to identify rme(receptor-mediated endocytosis) mutants. We describe a new member of the low-density lipoprotein receptor superfamily, RME-2, identified in our screens for endocytosis defective mutants. We show that RME-2 is the C. elegans yolk receptor.


1996 ◽  
Vol 134 (2) ◽  
pp. 537-548 ◽  
Author(s):  
T A Starich ◽  
R Y Lee ◽  
C Panzarella ◽  
L Avery ◽  
J E Shaw

The Drosophila melanogaster genes Passover and l(1)ogre and the Caenorhabditis elegans gene unc-7 define a gene family whose function is not known. We have isolated and characterized the C. elegans gene eat-5, which is required for synchronized pharyngeal muscle contractions, and find that it is a new member of this family. Simultaneous electrical and video recordings reveal that in eat-5 mutants, action potentials of muscles in the anterior and posterior pharynx are unsynchronized. Injection of carboxyfluorescein into muscles of the posterior pharynx demonstrates that all pharyngeal muscles are dye-coupled in wild-type animals; in eat-5 mutants, however, muscles of the anterior pharynx are no longer dye-coupled to posterior pharyngeal muscles. We show that a gene fusion of eat-5 to the green fluorescent protein is expressed in pharyngeal muscles. unc-7 and eat-5 are two of at least sixteen members of this family in C. elegans as determined by database searches and PCR-based screens. The amino acid sequences of five of these members in C. elegans have been deduced from cDNA sequences. Polypeptides of the family are predicted to have four transmembrane domains with cytoplasmic amino and carboxyl termini. We have constructed fusions of one of these polypeptides with beta-galactosidase and with green fluorescent protein. The fusion proteins appear to be localized in a punctate pattern at or near plasma membranes. We speculate that this gene family is required for the formation of gap junctions.


2007 ◽  
Vol 292 (5) ◽  
pp. C1867-C1873 ◽  
Author(s):  
Chunyi George Huang ◽  
Todd Lamitina ◽  
Peter Agre ◽  
Kevin Strange

Aquaporin channels facilitate the transport of water, glycerol, and other small solutes across cell membranes. The physiological roles of many aquaporins remain unclear. To better understand aquaporin function, we characterized the aquaporin gene family in the nematode Caenorhabditis elegans. Eight canonical aquaporin-encoding genes ( aqp) are present in the worm genome. Expression of aqp-2, aqp-3, aqp-4, aqp-6, or aqp-7 in Xenopus oocytes increased water permeability five- to sevenfold. Glycerol permeability was increased three to sevenfold by expression of aqp-1, aqp-3, or aqp-7. Green fluorescent protein transcriptional and translational reporters demonstrated that aqp genes are expressed in numerous C. elegans cell types, including the intestine, excretory cell, and hypodermis, which play important roles in whole animal osmoregulation. To define the role of C. elegans aquaporins in osmotic homeostasis, we isolated deletion alleles for four aqp genes, aqp-2, aqp-3, aqp-4, and aqp-8, which are expressed in osmoregulatory tissues and mediate water transport. Single, double, triple, and quadruple aqp mutant animals exhibited normal survival, development, growth, fertility, and movement under normal and hypertonic culture conditions. aqp-2; aqp-3; aqp-4; aqp-8 quadruple mutants exhibited a slight defect in recovery from hypotonic stress but survived hypotonic stress as well as wild-type animals. These results suggest that C. elegans aquaporins are not essential for whole animal osmoregulation and/or that deletion of aquaporin genes activates mechanisms that compensate for loss of water channel function.


Genetics ◽  
2001 ◽  
Vol 159 (1) ◽  
pp. 133-145 ◽  
Author(s):  
Hanna Fares ◽  
Iva Greenwald

Abstract The coelomocytes of Caenorhabditis elegans are scavenger cells that continuously and nonspecifically endocytose fluid from the pseudocoelom (body cavity). Green fluorescent protein (GFP) secreted into the pseudocoelom from body wall muscle cells is endocytosed and degraded by coelomocytes. We show that toxin-mediated ablation of coelomocytes results in viable animals that fail to endocytose pseudocoelomic GFP, indicating that endocytosis by coelomocytes is not essential for growth or survival of C. elegans under normal laboratory conditions. We examined known viable endocytosis mutants, and performed RNAi for other known endocytosis genes, for coelomocyte uptake defective (Cup) phenotypes. We also screened for new genes involved in endocytosis by isolating viable mutants with Cup defects; this screen identified 14 different genes, many with multiple alleles. A variety of Cup terminal phenotypes were observed, consistent with defects at various steps in the endocytic pathway. Available molecular information indicates that the Cup mutant screen has identified novel components of the endocytosis machinery that are conserved in mammals but not in Saccharomyces cerevisiae, the only other organism for which large-scale genetic screens for endocytosis mutants have been performed.


2004 ◽  
Vol 32 (5) ◽  
pp. 682-684 ◽  
Author(s):  
J.M. Scholey ◽  
G. Ou ◽  
J. Snow ◽  
A. Gunnarson

IFT (intraflagellar transport) assembles and maintains sensory cilia on the dendritic endings of chemosensory neurons within the nematode Caenorhabditis elegans. During IFT, macromolecular protein complexes called IFT particles (which carry ciliary precursors) are moved from the base of the sensory cilium to its distal tip by anterograde IFT motors (kinesin-II and Osm-3 kinesin) and back to the base by retrograde IFT-dynein [Rosenbaum and Witman (2002) Nat. Rev. Mol. Cell Biol. 3, 813–825; Scholey (2003) Annu. Rev. Cell Dev. Biol. 19, 423–443; and Snell, Pan and Wang (2004) Cell 117, 693–697]. In the present study, we describe the protein machinery of IFT in C. elegans, which we have analysed using time-lapse fluorescence microscopy of green fluorescent protein-fusion proteins in concert with ciliary mutants.


2005 ◽  
Vol 16 (1) ◽  
pp. 106-116 ◽  
Author(s):  
W. Pellis-van Berkel ◽  
M.H.G. Verheijen ◽  
E. Cuppen ◽  
M. Asahina ◽  
J. de Rooij ◽  
...  

The Rap-pathway has been implicated in various cellular processes but its exact physiological function remains poorly defined. Here we show that the Caenorhabditis elegans homologue of the mammalian guanine nucleotide exchange factors PDZ-GEFs, PXF-1, specifically activates Rap1 and Rap2. Green fluorescent protein (GFP) reporter constructs demonstrate that sites of pxf-1 expression include the hypodermis and gut. Particularly striking is the oscillating expression of pxf-1 in the pharynx during the four larval molts. Deletion of the catalytic domain from pxf-1 leads to hypodermal defects, resulting in lethality. The cuticle secreted by pxf-1 mutants is disorganized and can often not be shed during molting. At later stages, hypodermal degeneration is seen and animals that reach adulthood frequently die with a burst vulva phenotype. Importantly, disruption of rap-1 leads to a similar, but less severe phenotype, which is enhanced by the simultaneous removal of rap-2. In addition, the lethal phenotype of pxf-1 can be rescued by expression of an activated version of rap-1. Together these results demonstrate that the pxf-1/rap pathway in C. elegans is required for maintenance of epithelial integrity, in which it probably functions in polarized secretion.


Sign in / Sign up

Export Citation Format

Share Document