scholarly journals An Opaque Cell-Specific Expression Program of Secreted Proteases and Transporters Allows Cell-Type Cooperation in Candida albicans

Genetics ◽  
2020 ◽  
Vol 216 (2) ◽  
pp. 409-429
Author(s):  
Matthew B. Lohse ◽  
Lucas R. Brenes ◽  
Naomi Ziv ◽  
Michael B. Winter ◽  
Charles S. Craik ◽  
...  

An unusual feature of the opportunistic pathogen Candida albicans is its ability to switch stochastically between two distinct, heritable cell types called white and opaque. Here, we show that only opaque cells, in response to environmental signals, massively upregulate a specific group of secreted proteases and peptide transporters, allowing exceptionally efficient use of proteins as sources of nitrogen. We identify the specific proteases [members of the secreted aspartyl protease (SAP) family] needed for opaque cells to proliferate under these conditions, and we identify four transcriptional regulators of this specialized proteolysis and uptake program. We also show that, in mixed cultures, opaque cells enable white cells to also proliferate efficiently when proteins are the sole nitrogen source. Based on these observations, we suggest that one role of white-opaque switching is to create mixed populations where the different phenotypes derived from a single genome are shared between two distinct cell types.

2020 ◽  
Author(s):  
Matthew B. Lohse ◽  
Lucas R. Brenes ◽  
Naomi Ziv ◽  
Michael B. Winter ◽  
Charles S. Craik ◽  
...  

AbstractAn unusual feature of the opportunistic pathogen C. albicans is its ability to stochastically switch between two distinct, heritable cell types called white and opaque. Here, we show that only opaque cells, in response to environmental signals, massively up-regulate a specific group of secreted proteases and peptide transporters, allowing exceptionally efficient use of proteins as sources of nitrogen. We identify the specific proteases (members of the secreted aspartyl protease (SAP) family) needed for opaque cells to proliferate under these conditions, and we identify four transcriptional regulators of this specialized proteolysis and uptake program. We also show that, in mixed cultures, opaque cells enable white cells to also proliferate efficiently when proteins are the sole nitrogen source. Based on these observations, we suggest that one role of white-opaque switching is to create mixed populations where the different phenotypes derived from a single genome are shared between two distinct cell types.SummaryThe opportunistic human fungal pathogen Candida albicans switches between two distinct, heritable cell types, named “white” and “opaque.” We show that opaque cells, in response to proteins as the sole nitrogen source, up-regulate a specialized program, including specific secreted aspartyl proteases and peptide transporters. We demonstrate that, in mixed cultures, opaque cells enable white cells to respond and proliferate more efficiently under these conditions. These observations suggest that white-opaque switching creates mixtures of cells where the population characteristics - which derive from a single genome - reflect the contributions of two distinct cell types.Dataset Reference NumbersThe .RAW files for both sets of Mass Spectrometry experiments have been deposited at the ProteoSAFe resource (https://proteomics.ucsd.edu/ProteoSAFe/).MSP-MS experiment reference number: MSV000085279. For reviewer access use login “MSV000085279_reviewer” and password “candidamspms”.Proteomics experiment reference number: MSV000085283. For reviewer access use login “MSV000085283_reviewer” and password “candidaprot”.


2021 ◽  
Vol 7 (1) ◽  
pp. 37
Author(s):  
Mohammad N. Qasim ◽  
Ashley Valle Arevalo ◽  
Clarissa J. Nobile ◽  
Aaron D. Hernday

Candida albicans, a diploid polymorphic fungus, has evolved a unique heritable epigenetic program that enables reversible phenotypic switching between two cell types, referred to as “white” and “opaque”. These cell types are established and maintained by distinct transcriptional programs that lead to differences in metabolic preferences, mating competencies, cellular morphologies, responses to environmental signals, interactions with the host innate immune system, and expression of approximately 20% of genes in the genome. Transcription factors (defined as sequence specific DNA-binding proteins) that regulate the establishment and heritable maintenance of the white and opaque cell types have been a primary focus of investigation in the field; however, other factors that impact chromatin accessibility, such as histone modifying enzymes, chromatin remodelers, and histone chaperone complexes, also modulate the dynamics of the white-opaque switch and have been much less studied to date. Overall, the white-opaque switch represents an attractive and relatively “simple” model system for understanding the logic and regulatory mechanisms by which heritable cell fate decisions are determined in higher eukaryotes. Here we review recent discoveries on the roles of chromatin accessibility in regulating the C. albicans white-opaque phenotypic switch.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jillian L. Lindblad ◽  
Meghana Tare ◽  
Alla Amcheslavsky ◽  
Alicia Shields ◽  
Andreas Bergmann

AbstractThe initiator caspase Dronc is the only CARD-domain containing caspase in Drosophila and is essential for apoptosis. Here, we report that homozygous dronc mutant adult animals are short-lived due to the presence of a poorly developed, defective and leaky intestine. Interestingly, this mutant phenotype can be significantly rescued by enteroblast-specific expression of dronc+ in dronc mutant animals, suggesting that proper Dronc function specifically in enteroblasts, one of four cell types in the intestine, is critical for normal development of the intestine. Furthermore, enteroblast-specific knockdown of dronc in adult intestines triggers hyperplasia and differentiation defects. These enteroblast-specific functions of Dronc do not require the apoptotic pathway and thus occur in a non-apoptotic manner. In summary, we demonstrate that an apoptotic initiator caspase has a very critical non-apoptotic function for normal development and for the control of the cell lineage in the adult midgut and therefore for proper physiology and homeostasis.


2019 ◽  
Vol 116 (28) ◽  
pp. 14254-14259 ◽  
Author(s):  
Zhihong Chen ◽  
James L. Ross ◽  
Dolores Hambardzumyan

Characterized by a dismal survival rate and limited response to therapy, glioblastoma (GBM) remains one of the most aggressive human malignancies. Recent studies of the role of tumor-associated macrophages (TAMs) in the progression of GBMs have demonstrated that TAMs are significant contributors to tumor growth, invasion, and therapeutic resistance. TAMs, which include brain-resident microglia and circulating bone marrow derived-monocytes (BMDMs), are typically grouped together in histopathological and molecular analyses due to the lack of reliable markers of distinction. To develop more effective therapies aimed at specific TAM populations, we must first understand how these cells differ both morphologically and behaviorally. Furthermore, we must develop a deeper understanding of the mechanisms encouraging their infiltration and how these mechanisms can be therapeutically exploited. In this study, we combined immunocompetent lineage tracing mouse models of GBM with high-resolution open-skull 2-photon microscopy to investigate the phenotypical and functional characteristics of TAMs. We demonstrate that TAMs are composed of 2 morphologically distinct cell types that have differential migratory propensities. We show that BMDMs are smaller, minimally branched cells that are highly migratory compared with microglia, which are larger, highly branched stationary cells. In addition, 2 populations of monocytic macrophages were observed that differed in terms of CX3CR1 expression and migratory capacity. Finally, we demonstrate the efficacy of anti-vascular endothelial growth factor A blockade for prohibiting TAM infiltration, especially against BMDMs. Taken together, our data clearly define characteristics of individual TAM populations and suggest that combination therapy with antivascular and antichemotaxis therapy may be an attractive option for treating these tumors.


2010 ◽  
Vol 9 (11) ◽  
pp. 1690-1701 ◽  
Author(s):  
Kevin Alby ◽  
Dana Schaefer ◽  
Racquel Kim Sherwood ◽  
Stephen K. Jones ◽  
Richard J. Bennett

ABSTRACT Mating in hemiascomycete yeasts involves the secretion of pheromones that induce sexual differentiation in cells of the opposite mating type. Studies in Saccharomyces cerevisiae have revealed that a subpopulation of cells experiences cell death during exposure to pheromone. In this work, we tested whether the phenomenon of pheromone-induced death (PID) also occurs in the opportunistic pathogen Candida albicans. Mating in C. albicans is uniquely regulated by white-opaque phenotypic switching; both cell types respond to pheromone, but only opaque cells undergo the morphological transition and cell conjugation. We show that approximately 20% of opaque cells, but not white cells, of laboratory strain SC5314 experience pheromone-induced death. Furthermore, analysis of mutant strains revealed that PID was significantly reduced in strains lacking Fig1 or Fus1 transmembrane proteins that are induced during the mating process and, we now show, are necessary for efficient mating in C. albicans. The level of PID was also Ca2+ dependent, as chelation of Ca2+ ions increased cell death to almost 50% of the population. However, in contrast to S. cerevisiae PID, pheromone-induced killing of C. albicans cells was largely independent of signaling via the Ca2+-dependent protein phosphatase calcineurin, even when combined with the loss of Cmk1 and Cmk2 proteins. Finally, we demonstrate that levels of PID vary widely between clinical isolates of C. albicans, with some strains experiencing close to 70% cell death. We discuss these findings in light of the role of prodeath and prosurvival pathways operating in yeast cells undergoing the morphological response to pheromone.


2006 ◽  
Vol 74 (7) ◽  
pp. 4366-4369 ◽  
Author(s):  
Teresa Bader ◽  
Klaus Schröppel ◽  
Stefan Bentink ◽  
Nina Agabian ◽  
Gerwald Köhler ◽  
...  

ABSTRACT By generating a calcineurin mutant of the Candida albicans wild-type strain SC5314 with the help of a new recyclable dominant selection marker, we confirmed that calcineurin mediates tolerance to a variety of stress conditions but is not required for the ability of C. albicans to switch to filamentous growth in response to hypha-inducing environmental signals. While calcineurin was essential for virulence of C. albicans in a mouse model of disseminated candidiasis, deletion of CMP1 did not significantly affect virulence during vaginal or pulmonary infection, demonstrating that the requirement for calcineurin for a successful infection depends on the host niche.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Faiza Tebbji ◽  
Yaolin Chen ◽  
Adnane Sellam ◽  
Malcolm Whiteway

ABSTRACT Candida albicans is a natural component of the human microbiota but also an opportunistic pathogen that causes life-threatening infections in immunosuppressed patients. Current therapeutics include a limited number of molecules that suffer from limitations, including growing clinical resistance and toxicity. New molecules are being clinically investigated; however, the majority of these potential antifungals target the same processes as do the standard antifungals and might confront the same problems of toxicity and loss of efficiency due to the common resistance mechanisms. Here, we characterized the role of Snf6, a fungus-specific subunit of the chromatin-remodeling complex SWI/SNF. Our genomic and phenotypic data demonstrated a central role of Snf6 in biological processes that are critical for a fungal pathogen to colonize its host and cause disease, suggesting Snf6 as a possible antifungal target. SWI/SNF is an ATP-dependent chromatin-remodeling complex that is required for the regulation of gene expression in eukaryotes. While most of the fungal SWI/SNF components are evolutionarily conserved with those of the metazoan SWI/SNF, subunits such as Snf6 are specific to certain fungi and thus represent potential antifungal targets. We have characterized the role of the Snf6 protein in Candida albicans. Our data showed that although there was low conservation of its protein sequence with other fungal orthologs, Snf6 was copurified with bona fide SWI/SNF complex subunits. The role of Snf6 in C. albicans was investigated by determining its genome-wide occupancy using chromatin immunoprecipitation coupled to tiling arrays in addition to transcriptional profiling of the snf6 conditional mutant. Snf6 directs targets that were enriched in functions related to carbohydrate and amino acid metabolic circuits, to cellular transport, and to heat stress responses. Under hypha-promoting conditions, Snf6 expanded its set of targets to include promoters of genes related to respiration, ribosome biogenesis, mating, and vesicle transport. In accordance with the genomic occupancy data, an snf6 doxycycline-repressible mutant exhibited growth defects in response to heat stress and also when grown in the presence of different fermentable and nonfermentable carbon sources. Snf6 was also required to differentiate invasive hyphae in response to different cues. This study represents the first comprehensive characterization, at the genomic level, of the role of SWI/SNF in the pathogenic yeast C. albicans and uncovers functions that are essential for fungal morphogenesis and metabolic flexibility. IMPORTANCE Candida albicans is a natural component of the human microbiota but also an opportunistic pathogen that causes life-threatening infections in immunosuppressed patients. Current therapeutics include a limited number of molecules that suffer from limitations, including growing clinical resistance and toxicity. New molecules are being clinically investigated; however, the majority of these potential antifungals target the same processes as do the standard antifungals and might confront the same problems of toxicity and loss of efficiency due to the common resistance mechanisms. Here, we characterized the role of Snf6, a fungus-specific subunit of the chromatin-remodeling complex SWI/SNF. Our genomic and phenotypic data demonstrated a central role of Snf6 in biological processes that are critical for a fungal pathogen to colonize its host and cause disease, suggesting Snf6 as a possible antifungal target.


2006 ◽  
Vol 5 (2) ◽  
pp. 321-329 ◽  
Author(s):  
Martine Bassilana ◽  
Robert A. Arkowitz

ABSTRACT We investigated the role of the highly conserved G protein Rac1 in the opportunistic pathogen Candida albicans. We identified and disrupted RAC1 and show here that, in contrast to CDC42, it is not necessary for viability or serum-induced hyphal growth but is essential for filamentous growth when cells are embedded in a matrix. Rac1 is localized to the plasma membrane, yet its distribution is more homogenous than that of Cdc42, with no enrichment at the tips of either buds or hyphae. In addition, fluorescence recovery after photobleaching results indicate that Rac1 and Cdc42 have different dynamics at the membrane. Furthermore, overexpression of Rac1 does not complement Cdc42 function, and conversely, overexpression of Cdc42 does not complement Rac1 function. Thus, Rac1 and Cdc42, although highly similar to one another, have different roles in C. albicans development.


2020 ◽  
Author(s):  
Pallavi Singh ◽  
Sean R. Stevenson ◽  
Ivan Reyna-Llorens ◽  
Gregory Reeves ◽  
Tina B. Schreier ◽  
...  

ABSTRACTThe efficient C4 pathway is based on strong up-regulation of genes found in C3 plants, but also compartmentation of their expression into distinct cell-types such as the mesophyll and bundle sheath. Transcription factors associated with these phenomena have not been identified. To address this, we undertook genome-wide analysis of transcript accumulation, chromatin accessibility and transcription factor binding in C4Gynandropsis gynandra. From these data, two models relating to the molecular evolution of C4 photosynthesis are proposed. First, increased expression of C4 genes is associated with increased binding by MYB-related transcription factors. Second, mesophyll specific expression is associated with binding of homeodomain transcription factors. Overall, we conclude that during evolution of the complex C4 trait, C4 cycle genes gain cis-elements that operate in the C3 leaf such that they become integrated into existing gene regulatory networks associated with cell specificity and photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document