scholarly journals Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding

2019 ◽  
Vol 59 (2) ◽  
pp. 149-166 ◽  
Author(s):  
Yu. Ya. Macheret ◽  
A. F. Glazovsky ◽  
I. I. Lavrentiev ◽  
I. O. Marchuk

Data of ground-based radio-echo sounding of 16 glaciers located on the Nordenskiold Land, Spitsbergen, carried out in springs of 1999, 2007 and 2010–2013, allowed defining five glaciers as of the cold thermal type while other eleven ones were polythermal glaciers. In the last ones (polythermal) the average thickness of the upper layer of cold ice and the bottom layer of temperate ice was equal to 11-66 m and 15-96 m, respectively. The ratio of these thicknesses varies from 0.32 to 2.28, and the volume fraction of temperate ice in the total volume of the glaciers varies from 1 to 74% and changes from 0 to 50% in the ablation zone up to 80% in the accumulation zone. Thickness of cold ice was determined by measured delay time of radar reflections from cold-temperate surface (CTS) while thickness of temperate ice was derived as a difference between the total thickness of the glacier and the thickness of its cold ice. For interpretation of radar reflections from CTS we used the noticeable distinction in character of the radar reflections from the upper and lower thicknesses of glacier: absence of internal reflections (excluding reflections from buried crevasses and glacier wells) from upper cold ice layer and a great number of reflections of hyperbolic form from the lower layer related to strong scattering of radio waves by water inclusions in the temperate ice. According to the measurements, relative power of the radar reflections from CTS is by 5,5–14,2 dB smaller than those from the bedrock, that can be considered as an indicator of smaller water content at CTS; so, the repeated measurements of their relative power can be used for estimation of temporal changes in the water content at these boundaries. In layers of the temperate ice, the series of vertical hyperbolic reflections penetrating the cold ice down to CTS and further to the bedrock were detected. Such reflections are related to buried crevasses and/or the glacier wells and can serve as sources of the water permeating during the melt periods from the glacier surface down to CTS and bedrock and, thus, influencing on the ice viscosity and fluidity as well as on velocity of the bottom sliding in the polythermal glaciers. Repeated measurements of relative power of reflections from buried crevasses and wells can also be used to study processes of freezing them through and emptying during the period before start of the surface melting. Relation between volume of temperate ice and area of 16 studied glaciers was used to estimate the probability of existence of polythermal glaciers with a temperate ice core in all 202 glaciers in the Nordenskiold Land. 72 glaciers with areas exceeding 1.79 km2 may be referred to the polythermal type. The probable total volume of temperate ice in these glaciers amounts roughly to 10 km3, and with the 95% confidence it is within the interval from 8 to 33 km3. Almost 80% of the whole temperate ice may be concentrated in only five glaciers with area more than 17 km2, that makes up 2.5% of the total number of glaciers and about 30% of their total area. Data presented in this paper demonstrate more sophisticated pattern of the cold and temperate ice distribution within the glaciers than it was earlier known that should be taken into consideration when modeling and forecasting dynamics of the polythermal glaciers and investigating internal processes of the temperate ice formation in such glaciers.

2016 ◽  
Vol 56 (2) ◽  
pp. 149-160 ◽  
Author(s):  
A. V. Sosnovsky ◽  
Yu. Ya. Macheret ◽  
A. F. Glazovsky ◽  
I. I. Lavrentiev

Thickness of the upper cold ice layer in the ablation area of the polythermal glacier Grønfjordbreen (Spitsbergen) was estimated by means of numerical modeling. The results were compared with data of radio-echo sounding of the same glacier obtained in 1979 and 2012. Numerical experiments with changing water content in the lower layer of temperate ice and surface snow cover thickness made possible to compare calculated and modeled cold ice thicknesses and to estimate their changes for 33‑year period caused by regional climate change. According to data of radio-echo sounding, thickness of the cold ice layer decreased, on average, by 34 m. Numerical modeling shown similar results: the cold ice layer became thinner by 31 m and 39 m at altitudes 100–300 a.s.l. under the snow cover thickness of 1 m and 2 m. We explain this by rising of annual mean air temperature by 0,6 °С as compared to data of the nearest meteorological station Barentsburg in the same period. We believe that changes in cold ice layer thickness in polythermal glaciers can be used for estimation of changes in such regional climatic parameter as mean air temperature at different altitudes of the glacier surface in the ablation area.


2016 ◽  
Vol 43 (24) ◽  
pp. 12,502-12,510 ◽  
Author(s):  
Anja Rutishauser ◽  
Cyril Grima ◽  
Martin Sharp ◽  
Donald D. Blankenship ◽  
Duncan A. Young ◽  
...  

1987 ◽  
Vol 9 ◽  
pp. 221-224 ◽  
Author(s):  
Minoru Yoshida ◽  
Kazunobu Yamashita ◽  
Shinji Mae

Extensive echo-sounding was carried out in east Dronning Maud Land during the 1984 field season. A 179 MHz radar with separate transmitting and receiving antennae was used and the echoes were recorded by a digital system to detect minute reflections. The results gave cross-sections of the ice sheet along traverse routes from lat. 69 °S. to 75°S, Detailed observations on the ground at Mizuho station showed that there was elliptical polarization in the internally reflected echoes when two antennae, kept in parallel with each other, were rotated horizontally. The internal echoes were most clearly distinguished when the antenna azimuth was oriented perpendicular to the flow line of the ice sheet. The internal echoes with a high reflection coefficient were detected at depths of 500–700 m and 1000–1500 m at Mizuho station. Since a distinct internal echo at a depth of 500 m coincides with a 5 cm thick volcanic ash-laden ice layer found in the 700 m ice core taken near the observation site, these echoes may correspond to the acidic ice layers formed by past volcanic events in east Dronning Maud Land.


2014 ◽  
Vol 60 (221) ◽  
pp. 553-562 ◽  
Author(s):  
Nanna B. Karlsson ◽  
Robert G. Bingham ◽  
David M. Rippin ◽  
Richard C.A. Hindmarsh ◽  
Hugh F.J. Corr ◽  
...  

AbstractThe potential for future dynamical instability of Pine Island Glacier, West Antarctica, has been addressed in a number of studies, but information on its past remains limited. In this study we use airborne radio-echo sounding (RES) data acquired over Pine Island Glacier to investigate past variations in accumulation pattern. In the dataset a distinctive pattern of layers was identified in the central part of the glacier basin. We use these layers as chronological identifiers in order to construct elevation maps of the internal stratigraphy. The observed internal layer stratigraphy is then compared to calculated stratigraphy from a three-dimensional ice-flow model that has been forced with different accumulation scenarios. The model results indicate that the accumulation pattern is likely to have changed at least twice since the deposition of the deepest identified layer. Additional RES data linked to the Byrd ice core provide an approximate timescale. This timescale suggests that the layers were deposited at the beginning of or during the Holocene period. Thus the widespread changes occurring in the coastal extent of the West Antarctic ice sheet at the end of the last glacial period could have been accompanied by changes in accumulation pattern.


2013 ◽  
Vol 54 (64) ◽  
pp. 44-50 ◽  
Author(s):  
Nanna B. Karlsson ◽  
Dorthe Dahl-Jensen ◽  
S. Prasad Gogineni ◽  
John D. Paden

Abstract Radio-echo sounding surveys over the Greenland ice sheet show clear, extensive internal layering, and comparisons with age–depth scales from deep ice cores allow for dating of the layering along the ice divide. We present one of the first attempts to extend the dated layers beyond the ice core drill sites by locating the depth of the Bølling–Allerød transition in >400 flight-lines using an automated fitting method. Results show that the transition is located in the upper one-third of the ice column in the central part of North Greenland, while the transition lowers towards the margin. This pattern mirrors the present surface accumulation, and also indicates that a substantial amount of pre-Holocene ice must be present in central North Greenland.


1987 ◽  
Vol 9 ◽  
pp. 5-10 ◽  
Author(s):  
J. L. Bamber

A single pronounced internal reflecting horizon has been observed on radio echo-sounding from over 30 glaciers in Spitsbergen. They are often present along the entire length of the glacier, remaining at a fairly constant depth (100–200 m) below the ice surface. Echo-strength data from radio echo-sounding have been used to obtain reflection coefficients, for these horizons, of between -15 and -25 dB. Combined with results of ice-core studies, the possible causes of this internal layer are investigated. The presence of water is found to be the most likely explanation, indicating the existence, at depth, of a layer of temperate ice.


1984 ◽  
Vol 30 (104) ◽  
pp. 16-21 ◽  
Author(s):  
J. A. Dowdeswell ◽  
D.J. Drewry ◽  
O. Liestøl ◽  
O. Orheim

AbstractAirborne radio echo-sounding of Spitsbergen glaciers during 1980 used 60 MHz SPR1 Mk IV equipment. On several glaciers results showed unambiguous bottom returns at depths 2–3 times those reported in previous Soviet echo-sounding at 440 and 620 MHz. Comparison of 60 MHZ records and independent gravity-surveyed ice thickness for two glaciers agreed to within 10%, whereas Soviet ice thicknesses were only 30–60% of gravity depths. Soviet bed echoes often coincided closely with an internal reflecting horizon recorded by the SPRI Mk IV system, and it is shown that Soviet U.H.F. equipment failed to penetrate to the true glacier bed on a number of ice masses (e.g. Finsterwalderbreen, Kongsvegen, Negribreen). This was probably due to increased absorption and scattering at higher radio frequencies, related to the inhomogeneous nature of Spitsbergen glaciers, which are often at or near the pressure-melting point. Both 60 MHz and U.H.F. equipment seldom recorded bed echoes in ice-cap accumulation areas (e.g. Isachsenfonna), where firn soaking during summer and 10 m temperatures of zero degrees have been observed. An isolated internal reflecting horizon was recorded on many glaciers. It is unlikely to be a moraine layer, but may be related to ice with a water content of 1–2% observed at a similar depth (115 m) in a drill core from Fridtjovbreen.


2006 ◽  
Vol 52 (177) ◽  
pp. 299-310 ◽  
Author(s):  
Olaf Eisen ◽  
Frank Wilhelms ◽  
Daniel Steinhage ◽  
Jakob Schwander

AbstractWe present a technique that modifies and extends down-hole target methods to provide absolute measures of uncertainty in radar-reflector depth of origin. We use ice-core profiles to model wave propagation and reflection, and then cross-correlate the model results with radio-echo sounding (RES) data to identify the depth of reflector events. Stacked traces recorded with RES near the EPICA drill site in Dronning Maud Land, Antarctica, provide reference radargrams, and dielectric properties along the deep ice core form the input data to a forward model of wave propagation that produces synthetic radargrams. Cross-correlations between synthetic and RES radargrams identify differences in propagation wave speed. They are attributed to uncertainties in pure-ice permittivity and are used for calibration. Removing conductivity peaks results in the disappearance of related synthetic reflections and enables the unambiguous relation of electric signatures to RES features. We find that (i) density measurements with g-attenuation or dielectric profiling are too noisy below the firn–ice transition to allow clear identification of reflections, (ii) single conductivity peaks less than 0.5 m wide cause the majority of prominent reflections beyond a travel time of about 10 µs (~900m depth) and (iii) some closely spaced conductivity peaks within a range of 1–2m cannot be resolved within the RES or synthetic data. Our results provide a depth accuracy to allow synchronization of age–depth profiles of ice cores by RES, modeling of isochronous internal structures, and determination of wave speed and of pure-ice properties. The technique successfully operates with dielectric profiling and electrical conductivity measurements, suggesting that it can be applied at other ice cores and drill sites.


2000 ◽  
Vol 46 (154) ◽  
pp. 369-374 ◽  
Author(s):  
Ludwig Hempel ◽  
Franz Thyssen ◽  
Niels Gundestrup ◽  
Henrik B. Clausen ◽  
Heinz Miller

AbstractThe depth of reflecting layers in Arctic ice sheets has been determined by electromagnetic echo sounding, using a varying distance between transmitter and receiver to determine the radar wave velocity. The depth of the radar reflecting layers is compared with a profile of electrical conductivity measurements (ECMs) from the Greenland Ice Core Project (GRIP) ice core, in order to determine the velocity of the radar waves in the ice cap. By using several reflecting layers, it is possible to isolate the firn correction of the wave velocity and to estimate the accuracy of the calculated electromagnetic wave velocity. The measured firn correction is compared with the correction calculated from the density profile, and a comparison between the depth profiles of ECM and radar based on the corrected electromagnetic wave velocity is presented. This profile shows that acid layers, which originate from major volcanic eruptions, show up as reflecting radar horizons.


1988 ◽  
Vol 11 ◽  
pp. 95-99 ◽  
Author(s):  
J. C. Moore

A 130 m long ice core has been dielectrically profiled. From an analysis of the measurements, we obtain a profile of the high-frequency (radio-echo) conductivity. This profile has been represented by a simplified 700 layer model. The model has layers of differing conductivities, permittivities and thicknesses. A reflection-coefficient log can be calculated, assuming that permittivity is a smooth function of depth. Variations in conductivity are shown to be more likely sources of internal reflections from depths greater than a few hundred metres than changes in permittivity caused by density changes. The log is convoluted with input pulses of various frequencies and pulse lengths in order to produce synthetic radargrams. These show features that correspond to the internal reflections typically seen when radio echo-sounding polar ice sheets.


Sign in / Sign up

Export Citation Format

Share Document