scholarly journals Effect of wet and dry torrefaction process on fuel properties of solid fuels derived from bamboo and Japanese cedar

BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8629-8640
Author(s):  
Wei Yang ◽  
Shengji Wu ◽  
Hui Wang ◽  
Pengyu Ma ◽  
Toshiniri Shimanouchi ◽  
...  

Torrefaction is a promising pretreatment process to convert biomass into high energy density solid fuel for further thermal conversion systems. In this study, the effects of wet and dry torrefaction on the properties of solid fuels prepared from bamboo and Japanese cedar were investigated in a batch reactor. The yields of solid fuels decreased with increasing treatment temperature in both torrefaction processes, mainly due to the decomposition of cellulose and hemicellulose. Cellulose showed higher reactivity than hemicellulose in both biomasses. The higher heating values (HHV) of solid fuels prepared at the treatment temperatures higher than 240 °C in both torrefaction processes reached the same level as those of commercial coals. Wet torrefaction was better than dry torrefaction for decomposing bamboo and Japanese cedar. Dry torrefaction had more favorable impact than wet torrefaction on improving the fuel properties of bamboo and Japanese cedar because of its lower energy input, higher solid fuel yield, higher energy yield, and similar HHV under the same conditions. The crystalline structure of solid fuel had no great change below 260 °C in both torrefaction processes and was completely destroyed at 300 °C during dry torrefaction.

2015 ◽  
Vol 32 (8) ◽  
pp. 1547-1553 ◽  
Author(s):  
Young-Hun Kim ◽  
Byeong-Il Na ◽  
Byoung-Jun Ahn ◽  
Hyoung-Woo Lee ◽  
Jae-Won Lee

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Gina M. Geiselman ◽  
James Kirby ◽  
Alexander Landera ◽  
Peter Otoupal ◽  
Gabriella Papa ◽  
...  

Abstract Background In an effort to ensure future energy security, reduce greenhouse gas emissions and create domestic jobs, the US has invested in technologies to develop sustainable biofuels and bioproducts from renewable carbon sources such as lignocellulosic biomass. Bio-derived jet fuel is of particular interest as aviation is less amenable to electrification compared to other modes of transportation and synthetic biology provides the ability to tailor fuel properties to enhance performance. Specific energy and energy density are important properties in determining the attractiveness of potential bio-derived jet fuels. For example, increased energy content can give the industry options such as longer range, higher load or reduced takeoff weight. Energy-dense sesquiterpenes have been identified as potential next-generation jet fuels that can be renewably produced from lignocellulosic biomass. Results We developed a biomass deconstruction and conversion process that enabled the production of two tricyclic sesquiterpenes, epi-isozizaene and prespatane, from the woody biomass poplar using the versatile basidiomycete Rhodosporidium toruloides. We demonstrated terpene production at both bench and bioreactor scales, with prespatane titers reaching 1173.6 mg/L when grown in poplar hydrolysate in a 2 L bioreactor. Additionally, we examined the theoretical fuel properties of prespatane and epi-isozizaene in their hydrogenated states as blending options for jet fuel, and compared them to aviation fuel, Jet A. Conclusion Our findings indicate that prespatane and epi-isozizaene in their hydrogenated states would be attractive blending options in Jet A or other lower density renewable jet fuels as they would improve viscosity and increase their energy density. Saturated epi-isozizaene and saturated prespatane have energy densities that are 16.6 and 18.8% higher than Jet A, respectively. These results highlight the potential of R. toruloides as a production host for the sustainable and scalable production of bio-derived jet fuel blends, and this is the first report of prespatane as an alternative jet fuel.


RSC Advances ◽  
2016 ◽  
Vol 6 (113) ◽  
pp. 112576-112580 ◽  
Author(s):  
Haifeng Xu

High-graphitization porous carbons were synthesized via an anion-exchange-assisted catalytic graphitization method for supercapacitors with high energy density.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Rami Alfattani ◽  
Mudasir Akbar Shah ◽  
Md Irfanul Haque Siddiqui ◽  
Masood Ashraf Ali ◽  
Ibrahim A. Alnaser

Bio-char has the ability to isolate carbon in soils and concurrently improve plant growth and soil quality, high energy density and also it can be used as an adsorbent for water treatment. In the current work, the characteristics of four different types of bio-chars, obtained from slow pyrolysis at 375 °C, produced from hard-, medium-, thin- and paper-shelled walnut residues have been studied. Bio-char properties such as proximate, ultimate analysis, heating values, surface area, pH values, thermal degradation behavior, morphological and crystalline nature and functional characterization using FTIR were determined. The pyrolytic behavior of bio-char is studied using thermogravimetric analysis (TGA) in an oxidizing atmosphere. SEM analysis confirmed morphological change and showed heterogeneous and rough texture structure. Crystalline nature of the bio-chars is established by X-ray powder diffraction (XRD) analysis. The maximum higher heating values (HHV), high fixed carbon content and surface area obtained for walnut shells (WS) samples are found as ~ 18.4 MJ kg−1, >80% and 58 m2/g, respectively. Improvement in HHV and decrease of O/C and H/C ratios lead the bio-char samples to fall into the category of coal and confirmed their hydrophobic, carbonized and aromatized nature. From the Fourier transform infra-red spectroscopy (FTIR), it is observed that there is alteration in functional groups with increase in temperature, and illustrated higher aromaticity. This showed that bio-chars have high potential to be used as solid fuel either for direct combustion or for thermal conversion processes in boilers, kilns and furnace. Further, from surface area and pH analysis of bio-chars, it is found that WS bio-chars have similar characteristics of adsorbents used for water purifications, retention of essential elements in soil and carbon sequestration.


2018 ◽  
Author(s):  
Pandji Prawisudha ◽  
Budi Triyono ◽  
Kevin Rorimpandey ◽  
Adrian Rizqi Irhamna ◽  
Toto Hardianto ◽  
...  

2021 ◽  
Vol 222 ◽  
pp. 106952
Author(s):  
Josanne-Dee Woodroffe ◽  
David V. Lupton ◽  
Michael D. Garrison ◽  
Eric M. Nagel ◽  
Michael J. Siirila ◽  
...  

2021 ◽  
Vol 45 (6) ◽  
pp. 477-484
Author(s):  
Mohd Faizal Hasan ◽  
Bemgba Bevan Nyakuma ◽  
Mohd Rosdzimin Abdul Rahman ◽  
Norazila Othman ◽  
Norhayati Ahmad ◽  
...  

In the present study, torrefaction of palm kernel shell (PKS) and petcoke blends was performed for the production of solid biofuels with high energy density. The torrefaction process was performed for mixtures with various mixing ratios (by weight) from 90:10 to 60:40 (PKS:petcoke). For torrefaction under various temperatures of 250℃ to 300℃, the mixing ratio of 60:40 was used. Meanwhile, residence time and nitrogen flow rate were fixed at 30 minutes and 1 l/min, respectively. In general, the fixed carbon and ash contents increased, while the moisture and volatile matter contents decreased after torrefaction. It has been elucidated that mass yield is a dominant factor that affects the energy yield of torrefied mixtures rather than the higher heating value (HHV) ratio. Based on the energy yield and ultimate analysis, it was found that a higher amount of petcoke and higher temperature give better performance, thus causing the torrefied mixture to become very close to coals region in Van Krevelen diagram. In this case, the mixture with a mixing ratio of 60:40 torrefied under the temperature of 300℃ gives the best performance. It was also found that this mixture is thermally stable than the mixture torrefied at 250℃.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


2020 ◽  
Vol 80 (2) ◽  
pp. 133-146
Author(s):  
L Zhang ◽  
Z Zhang ◽  
J Cao ◽  
Y Luo ◽  
Z Li

Grain maize production exceeds the demand for grain maize in China. Methods for harvesting good-quality silage maize urgently need a theoretical basis and reference data in order to ensure its benefits to farmers. However, research on silage maize is limited, and very few studies have focused on its energetic value and quality. Here, we calibrated the CERES-Maize model for 24 cultivars with 93 field experiments and then performed a long-term (1980-2017) simulation to optimize genotype-environment-management (G-E-M) interactions in the 4 main agroecological zones across China. We found that CERES-Maize could reproduce the growth and development of maize well under various management and weather conditions with a phenology bias of <5 d and biomass relative root mean square error values of <5%. The simulated results showed that sowing long-growth-cycle cultivars approximately 10 d in advance could yield good-quality silage. The optimal sowing dates (from late May to July) and harvest dates (from early October to mid-November) gradually became later from north to south. A high-energy yield was expected when sowing at an early date and/or with late-maturing cultivars. We found that Northeast China and the North China Plain were potential silage maize growing areas, although these areas experienced a medium or even high frost risk. Southwestern maize experienced a low risk level, but the low soil fertility limited the attainable yield. The results of this paper provide information for designing an optimal G×E×M strategy to ensure silage maize production in the Chinese Maize Belt.


Sign in / Sign up

Export Citation Format

Share Document