scholarly journals Biochar Characterization Produced from Walnut Shell Biomass through Slow Pyrolysis: Sustainable for Soil Amendment and an Alternate Bio-Fuel

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Rami Alfattani ◽  
Mudasir Akbar Shah ◽  
Md Irfanul Haque Siddiqui ◽  
Masood Ashraf Ali ◽  
Ibrahim A. Alnaser

Bio-char has the ability to isolate carbon in soils and concurrently improve plant growth and soil quality, high energy density and also it can be used as an adsorbent for water treatment. In the current work, the characteristics of four different types of bio-chars, obtained from slow pyrolysis at 375 °C, produced from hard-, medium-, thin- and paper-shelled walnut residues have been studied. Bio-char properties such as proximate, ultimate analysis, heating values, surface area, pH values, thermal degradation behavior, morphological and crystalline nature and functional characterization using FTIR were determined. The pyrolytic behavior of bio-char is studied using thermogravimetric analysis (TGA) in an oxidizing atmosphere. SEM analysis confirmed morphological change and showed heterogeneous and rough texture structure. Crystalline nature of the bio-chars is established by X-ray powder diffraction (XRD) analysis. The maximum higher heating values (HHV), high fixed carbon content and surface area obtained for walnut shells (WS) samples are found as ~ 18.4 MJ kg−1, >80% and 58 m2/g, respectively. Improvement in HHV and decrease of O/C and H/C ratios lead the bio-char samples to fall into the category of coal and confirmed their hydrophobic, carbonized and aromatized nature. From the Fourier transform infra-red spectroscopy (FTIR), it is observed that there is alteration in functional groups with increase in temperature, and illustrated higher aromaticity. This showed that bio-chars have high potential to be used as solid fuel either for direct combustion or for thermal conversion processes in boilers, kilns and furnace. Further, from surface area and pH analysis of bio-chars, it is found that WS bio-chars have similar characteristics of adsorbents used for water purifications, retention of essential elements in soil and carbon sequestration.

Author(s):  
Sean Dalton ◽  
Henry Koon ◽  
Jennifer O’Malley ◽  
Julianna Abel

Black box design is a constraint driven design approach that distills essential elements of a physical process into inputs and outputs. This paper details the black box design implementation and validation of shape memory alloy (SMA) coil actuators as active members in a Watt I six bar avian-inspired wearable morphing angel wing mechanism. SMA coil actuators leverage the unique characteristics of high energy density SMA wire by providing a compact structural platform for large actuation displacement applications. The moderate force and displacement performance of low spring index coil actuators paired with their virtually silent actuation performance made them an attractive actuator solution to an avian-inspired wearable morphing wing mechanism for the University of Minnesota Department of Theatre Arts and Dance production of ‘Marisol’. The wing design constraints (extended span of 7.5 ft, a closed span of 3 ft) required a tailorable actuator system with capacity to perform at particular target force and strain metrics cyclically. A low spring index parameter study was conducted to facilitate an accelerated phase of design prototyping. The parameter study featured six SMA coil actuator prototypes made with 0.012” diameter Dynalloy Flexinol® wire of varying spring indexes (C = 2.5–4.9). The coil actuators were manufactured through a CNC winding process, shape set in a furnace at 450 °C for 10 minutes, and water quenched for hardening. A series of thermomechanical actuation tests were conducted to experimentally characterize the low spring index actuation performances. The coil actuation characterizations demonstrated increased force and decreased actuator displacement corresponding to decreased spring indexes. Scaling these results aided an accelerated design of an actuator system. The actuator system consisted of four C = 3.05 coil actuators wound with 0.02” diameter SMA that were integrated into each Watt I mechanism. The characterization of the force-displacement profiles for low index SMA coil actuators provides an effective empirical design strategy for scaling actuator performance to mechanical systems requiring moderate force, moderate displacement actuators.


2020 ◽  
Vol 17 (Issue 1) ◽  
pp. 16-24
Author(s):  
Soumya Mukherjee

CNT based material are of vital importance in modern technology for their superior physical and chemical properties. In recent times, materials development for energy applications is focused for improvement of battery, capacitors, and electrodes for enhanced efficiency. High performance Supercapacitors with high energy densities are at the leading edge for renewable energy engineering device sector. CNT based Ni-Co-O material is of keen interest due to its possible applications as supercapacitors, electrocatalyst for metal/air battery and others. The hybrid material synthesis, morphological and electrochemical features are vital to evaluate the material performances for energy applications. Electrical studies are also important to evaluate the properties required for device applications. CNT is used as electrode material for electrochemical storage due to superior chemical stability, low mass density, low resistivity and large surface area. CNT replaces activated carbon material as supercapacitor due to improper balance between enhanced surface area and mesoporosity thus limiting electrolytic accessibility and capacitance. In the present article a brief review is stressed forward for the development of CNT-Ni-Co-O based hybrid material for supercapacitor high energy density applications.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1468 ◽  
Author(s):  
Yun Gu ◽  
Le-Qing Fan ◽  
Jian-Ling Huang ◽  
Cheng-Long Geng ◽  
Jian-Ming Lin ◽  
...  

Co@NiSe2 electrode materials were synthesized via a simple hydrothermal method by using nickel foam in situ as the backbone and subsequently characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and a specific surface area analyzer. Results show that the Co@NiSe2 electrode exhibits a nanowire structure and grows uniformly on the nickel foam base. These features make the electrode show a relatively high specific surface area and electrical conductivity, and thus exhibit excellent electrochemical performance. The obtained electrode has a high specific capacitance of 3167.6 F·g−1 at a current density of 1 A·g−1. To enlarge the potential window and increase the energy density, an asymmetric supercapacitor was assembled by using a Co@NiSe2 electrode and activated carbon acting as positive and negative electrodes, respectively. The prepared asymmetrical supercapacitor functions stably under the potential window of 0–1.6 V. The asymmetric supercapacitor can deliver a high energy density of 50.0 Wh·kg−1 at a power density of 779.0 W·kg−1. Moreover, the prepared asymmetric supercapacitor exhibits a good rate performance and cycle stability.


2019 ◽  
Vol 4 (2) ◽  
pp. 105
Author(s):  
Soraya Ulfa Muzayanha ◽  
Cornelius Satria Yudha ◽  
Luthfi Mufidatul Hasanah ◽  
Adrian Nur ◽  
Agus Purwanto

<p>The use of Li-ion batteries has increased with the increasing of portable electronic media. Li-ion batteries have a life cycle hence a recycling process is needed in order to reduce the potential hazard of waste while increasing the economic value of unused battery material, especially its cathode active material. This study used Lithium Nickel Cobalt Oxide (NCA) cathode scrap to be regenerated which NCA material has high energy density and high capacity. The pretreatment process is one of the determinants in the subsequent recycling process. In this study, the effect of heating on the pretreatment process was carried out with variation temperatures of 500-800<sup>0</sup>C to obtain powder which will be recycled. The combination process of the leaching and co-precipitation was used to regenerate the cathode active material. Atomic Absorption Spectrophotometry (AAS) was performed to determine leaching efficiency using 4M H<sub>2</sub>SO<sub>4</sub> at 40<sup>0</sup>C for 3 hours. X-ray Diffraction (XRD) analysis showed that NCA material has been successfully regenerated which the diffraction peaks of NCA material was in accordance with JCPDS standards. The morphology of NCA material was tested using Scanning Electron Microscopy (SEM). Electrochemical testing uses a cylindrical battery at 2.7-4.2 Volt which the initial specific discharge capacity of the power is 62.13 mAh / g.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
A. Sumboja ◽  
B. Prakoso ◽  
Y. Ma ◽  
F. R. Irwan ◽  
J. J. Hutani ◽  
...  

Developing a high-performance ORR (oxygen reduction reaction) catalyst at low cost has been a challenge for the commercialization of high-energy density and low production cost aluminium-air batteries. Herein, we report a catalyst, prepared by pyrolyzing the shell waste of peanut or pistachio, followed by concurrent nitrogen-doping and FeCo alloy nanoparticle loading. Large surface area (1246.4 m2 g-1) of pistachio shell-derived carbon can be obtained by combining physical and chemical treatments of the biomass. Such a large surface area carbon eases nitrogen doping and provides more nucleation sites for FeCo alloy growth, furnishing the resultant catalyst (FeCo/N-C-Pistachio) with higher content of N, Fe, and Co with a larger electrochemically active surface area as compared to its peanut shell counterpart (FeCo/N-C-Peanut). The FeCo/N-C-Pistachio displays a promising onset potential of 0.93 V vs. RHE and a high saturating current density of 4.49 mA cm-2, suggesting its high ORR activity. An aluminium-air battery, with FeCo/N-C-Pistachio catalyst on the cathode and coupled with a commercial aluminium 1100 anode, delivers a power density of 99.7 mW cm-2 and a stable discharge voltage at 1.37 V over 5 h of operation. This high-performance, low-cost, and environmentally sustainable electrocatalyst shows potential for large-scale adoption of aluminium-air batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (113) ◽  
pp. 112576-112580 ◽  
Author(s):  
Haifeng Xu

High-graphitization porous carbons were synthesized via an anion-exchange-assisted catalytic graphitization method for supercapacitors with high energy density.


Carbon ◽  
2021 ◽  
Vol 174 ◽  
pp. 463-474
Author(s):  
Aravindha Raja Selvaraj ◽  
Anand Muthusamy ◽  
Inho-Cho ◽  
Hee-Je Kim ◽  
Karuppanan Senthil ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (38) ◽  
pp. 21724-21732 ◽  
Author(s):  
Vichuda Sattayarut ◽  
Thanthamrong Wanchaem ◽  
Pundita Ukkakimapan ◽  
Visittapong Yordsri ◽  
Paweena Dulyaseree ◽  
...  

Nitrogen self-doped activated carbons with high surface area obtained via the direct activation of Samanea saman leaves for high energy density supercapacitors.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4050 ◽  
Author(s):  
Hsiu-Ying Chung ◽  
Guan-Ting Pan ◽  
Zhong-Yun Hong ◽  
Chun-Tsung Hsu ◽  
Siewhui Chong ◽  
...  

A series of heteroatom-containing porous carbons with high surface area and hierarchical porosity were successfully prepared by hydrothermal, chemical activation, and carbonization processes from soybean residues. The initial concentration of soybean residues has a significant impact on the textural and surface functional properties of the obtained biomass-derived porous carbons (BDPCs). SRAC5 sample with a BET surface area of 1945 m2 g−1 and a wide micro/mesopore size distribution, nitrogen content of 3.8 at %, and oxygen content of 15.8 at % presents the best electrochemical performance, reaching 489 F g−1 at 1 A g−1 in 6 M LiNO3 aqueous solution. A solid-state symmetric supercapacitor (SSC) device delivers a specific capacitance of 123 F g−1 at 1 A g−1 and a high energy density of 68.2 Wh kg−1 at a power density of 1 kW kg−1 with a wide voltage window of 2.0 V and maintains good cycling stability of 89.9% capacitance retention at 2A g−1 (over 5000 cycles). The outstanding electrochemical performances are ascribed to the synergistic effects of the high specific surface area, appropriate pore distribution, favorable heteroatom functional groups, and suitable electrolyte, which facilitates electrical double-layer and pseudocapacitive mechanisms for power and energy storage, respectively.


Sign in / Sign up

Export Citation Format

Share Document