scholarly journals Hydrogen-rich syngas production via catalytic gasification of sewage sludge and wheat straw using corn stalk char-supported catalysts

BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 4294-4313
Author(s):  
Shuang Shang ◽  
Chaoqiang Guo ◽  
Kui Lan ◽  
Zeshan Li ◽  
Weitao He ◽  
...  

The co-gasification of wheat straw and wet sewage sludge for hydrogen-rich gas production was investigated in a fixed bed reactor with corn stalk char (CSC)-supported catalysts. The Ni/CSC, Ni-Fe/CSC, and Ni-Fe-La/CSC catalysts were characterized via ultimate analysis, X-ray fluorescence, thermogravimetric, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, and Fourier transform infrared spectroscopy analyses. A series of experiments were performed to explore the effects of reactor temperature, catalyst type, moisture content of wet sludge, and catalyst recycling performance on the composition and yield of gasification gases. The experiments demonstrated that the nickel-iron alloy (Fe0.64Ni0.36) was detected in the Ni-Fe-La/CSC catalyst, and the Ni-Fe-La/CSC catalyst showed much higher hydrogen production compared with the Ni/CSC and Ni-Fe/CSC catalysts. Furthermore, La2O3 effectively maintained the catalytic performance of the catalyst by relieving carbon deposition. Compared with non-catalyst biomass gasification, H2 yield increased from 3.80 mol/kg to 11.96 mol/kg using Ni-Fe-La/CSC catalyst at 600 °C. The newly developed tri-metallic Ni-Fe-La/CSC catalyst exhibited high catalytic activity for biomass gasification at low temperature.

BioResources ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1716-1731 ◽  
Author(s):  
Shuang Shang ◽  
Zhenhua Qin ◽  
Kui Lan ◽  
Yan Wang ◽  
Juanjuan Zhang ◽  
...  

A Ni/Zr-MOF catalyst supported on Zr-metal organic framework (Zr-MOF) was prepared by a homogeneous precipitation method and was used in the co-gasification of wet sludge and straw. The Ni/Zr-MOF catalyst was characterized via thermogravimetric, X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry, and Brunauer-Emmett-Teller analyses. The experimental results illustrated that the Zr-MOF crystals were an octahedral structure with a specific surface area of 806 m2/g, and had mesoporous structure. Nickel was uniformly dispersed on the surface of the catalyst, and most of the Ni/Zr-MOF crystals maintained an octahedral morphology. Compared with non-catalyst biomass gasification, the H2 yield increased from 0.39 mol/kg to 11.87 mol/kg using the Ni/Zr-MOF catalyst at 500 °C. After 10 instances of reuse, the H2 yield was still as high as 10.11 mol/kg. The Ni/Zr-MOF catalyst exhibited high catalytic activity and stability for biomass gasification at low-temperature.


Author(s):  
Haoran Ding ◽  
Yongqing Xu ◽  
Linyi Xiang ◽  
Qiyao Wang ◽  
Cheng Shen ◽  
...  

In order to reduce the hotspots in partial oxidation of methane, CeO2 supported BaCoO3 perogvskite-type oxides were synthesized using a sol-gel method and applied in chemical-looping steam methane reforming (CL-SMR). The synthesized BaCoO3-CeO2 was characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). XRD and XPS results suggested that the obtained BaCoO3 was pure crystalline perovskite, its crystalline structure and lattice oxygen could regenerate after calcining. The reactivity of perovskite-type oxides in CL-SMR was evaluated using a fixed-bed reactor. Gas production rates and H2/CO ratios showed that the optimal reaction temperature was about 860 °C and the properly reaction time in fuel reactor was about 180s when Weight Hourly Space Velocity (WHSV) was 23.57 h−1. The syngas production in fuel reactor were 265.11 ml/g, hydrogen production in reforming reactor were 82.53 ml/g. (CSPE)


2018 ◽  
Vol 67 ◽  
pp. 02035
Author(s):  
Joni Prasetyo ◽  
Nurdiah Rahmawati ◽  
Galuh Wirama Murti ◽  
S.D. Sumbogo Murti ◽  
Tyas Puspitarini ◽  
...  

Biomass waste has been emerging as an alternative energy and fuel. Direct combustion of biomass leads to harmful substances such as NOx and CO which are environmentally unfriendly manner. Innovation of clean technologies like gasification would have a potential in developing technology to reduce the emissions of harmful substances into the environment. The syngas of biomass gasification is an intermediate product which can be converted further to various types of alternative fuels especially methanol. Agency for the Assessment and application of Technology (BBPT)-Indonesia in cooperation with Gunma University-Japan has been conducting assessment and application of environmentally friendly solid biomass wastes utilization technology under the SATREPS (Science and Technology Research Partnership for Sustainable Development) program. This work is a prolongation of biomass gasification process from empty fruit bunches (EFB) to produce syngas. Furthermore, the syngas has a potential as raw material to synthesize methanol. The study of methanol synthesis focused on the development of efficient and low-cost catalyst in term of low pressure and low temperature. The catalyst of methanol synthesis was prepared by co-precipitation method with copper basis. The experiments have been performed and tested in a once-through process by Low-Pressure Fixed Bed Reactor in Micromeritics unit at a mild operating condition. The result shows that catalyst CuO: ZnO: Al2O3 (47%: 37%: 15%) has a good performance at 20 bar and 270°C with methanol concentration in the gas product up to 1.15%. On the words, the local catalyst performance comparable with commercial catalysts at low pressure and low temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Der-Shing Lee ◽  
Yu-Wen Chen

A series of Au/-TiO2 with various Co/Ti ratios prepared. /TiO2 was prepared by incipient wetness impregnation with aqueous solution of cobalt nitrate. Au catalysts were prepared by deposition-precipitation (DP) method at pH 7 and 338 K. The catalysts were characterized by inductively coupled plasma-mass spectrometry, temperature programming reduction, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The reaction was carried out in a fixed bed reactor with a feed containing 1% CO in air at weight hourly space velocities of 120,000 mL/h g and 180,000 mL/h g. High gold dispersion and narrow particle size distribution were obtained by DP method. The addition of into Au/TiO2 enhanced the activity of CO oxidation significantly. Au/5%  -TiO2 had the highest catalyst among all the catalysts. was mainly in the form of nanosize Co3O4 which could stabilize the Au nanoparticles. donated partial electrons to Au. The interactions among Au, , and TiO2 account for the high catalytic activity for CO oxidation.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Xuan Liu ◽  
Kiran Raj G. Burra ◽  
Zhiwei Wang ◽  
Jinhu Li ◽  
Defu Che ◽  
...  

Abstract Syngas production from catalytic gasification of polystyrene and pinewood in CO2 atmosphere was investigated over Ni-Mg/Al2O3 catalyst in a fixed-bed reactor at 900 °C. A quasi in situ method was adopted for catalytic gasification wherein the catalyst placed downstream of the feedstock in the same reactor was used for enhanced syngas production. The effect of catalyst on evolutionary behavior, cumulative syngas yield, syngas composition, and cold gas efficiency was systematically analyzed. The results showed that addition of catalyst for polystyrene gasification resulted in enhanced yields of 63% H2, 20% CO, 119% CH4, and 85% C2-C3 yields. Enhanced H2 and light hydrocarbon yields were mainly from enhanced cracking of pyrolytic vapors from polystyrene degradation, while the CO yield was attributed to CO2-assisted reforming of benzene derivatives from primary cracking and polycyclic aromatic hydrocarbons (PAHs) from secondary gas phase condensations. The yields of H2, CO, CH4, and C2-C3 from pinewood gasification in the presence of catalyst was also enhanced by 150%, 14%, 39%, and 16%, respectively, indicating that Ni-Mg/Al2O3 catalyst can efficiently enhance syngas production in CO2-assisted gasification. A comparison of syngas composition between non-catalytic and catalytic conditions revealed improved syngas quality in catalytic gasification with increased H2 mole fraction but decreased CO mole fraction. Furthermore, cold gas efficiency enhanced from 44% to 57% in catalytic polystyrene gasification, and from 75% to 94% in catalytic pinewood gasification. The results suggest that catalytic CO2 gasification offers a promising pathway for efficient energy production from wastes plastics and biomass while simultaneously using CO2.


Author(s):  
Parisa Sadeghpour ◽  
Mohammad Haghighi ◽  
Mehrdad Esmaeili

Aim and Objective: Effect of two different modification methods for introducing Ni into ZSM-5 framework was investigated under high temperature synthesis conditions. The nickel successfully introduced into the MFI structures at different crystallization conditions to enhance the physicochemical properties and catalytic performance. Materials and Methods: A series of impregnated Ni/ZSM-5 and isomorphous substituted NiZSM-5 nanostructure catalysts were prepared hydrothermally at different high temperatures and within short times. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDX), Brunner, Emmett and Teller-Barrett, Joyner and Halenda (BET-BJH), Fourier transform infrared (FTIR) and Temperature-programmed desorption of ammonia (TPDNH3) were applied to investigate the physicochemical properties. Results: Although all the catalysts showed pure silica MFI–type nanosheets and coffin-like morphology, using the isomorphous substitution for Ni incorporation into the ZSM-5 framework led to the formation of materials with lower crystallinity, higher pore volume and stronger acidity compared to using impregnation method. Moreover, it was found that raising the hydrothermal temperature increased the crystallinity and enhanced more uniform incorporation of Ni atoms in the crystalline structure of catalysts. TPD-NH3 analysis demonstrated that high crystallization temperature and short crystallization time of NiZSM-5(350-0.5) resulted in fewer weak acid sites and medium acid strength. The MTO catalytic performance was tested in a fixed bed reactor at 460ºC and GHSV=10500 cm3 /gcat.h. A slightly different reaction pathway was proposed for the production of light olefins over impregnated Ni/ZSM-5 catalysts based on the role of NiO species. The enhanced methanol conversion for isomorphous substituted NiZSM-5 catalysts could be related to the most accessible active sites located inside the pores. Conclusion: The impregnated Ni/ZSM-5 catalyst prepared at low hydrothermal temperature showed the best catalytic performance, while the isomorphous substituted NiZSM-5 prepared at high temperature was found to be the active molecular sieve regarding the stability performance.


2020 ◽  
Vol 9 (1) ◽  
pp. 734-743
Author(s):  
Ran Zhao ◽  
ZiChen Tian ◽  
Zengwu Zhao

AbstractBayan Obo tailings are rich in rare earth elements (REEs), iron, and other catalytic active substances. In this study, mine tailings were calcined at different temperatures and tested for the catalytic combustion of low-concentration methane. Upon calcination at 600°C, high catalytic activity was revealed, with 50% CH4 conversion at 587°C (space velocity of 12,000 mL/g h). The physicochemical properties of catalysts were characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, hydrogen temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). Compared to the raw ore sample, the diffraction peak intensity of Fe2O3 increased post calcination, whereas that of CeCO3F decreased. A porous structure appeared after the catalyst was calcined at 600°C. Additionally, Fe, Ce, Ti, and other metal elements were more highly dispersed on the catalyst surface. H2-TPR results revealed a broadening of the reduction temperature range for the catalyst calcined at 600°C and an increase in the reduction peak. XPS analysis indicated the presence of Ce in the form of Ce3+ and Ce4+ oxidation states and the coexistence of Fe in the form of Fe2+ and Fe3+. Moreover, XPS revealed a higher surface Oads/Olatt ratio. This study provides evidence for the green reuse of Bayan Obo mine tailings in secondary resources.


2021 ◽  
Vol 35 (6) ◽  
pp. 4997-5005
Author(s):  
Xiaoxia Yang ◽  
Shengshen Gu ◽  
Amanj Kheradmand ◽  
Yijiao Jiang

Sign in / Sign up

Export Citation Format

Share Document