scholarly journals Soda-anthraquinone pulping optimization of oil palm empty fruit bunch

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5012-5031
Author(s):  
Nurul Husna Mohd Hassan ◽  
Noorshashillawati Azura Mohammad ◽  
Mazlan Ibrahim ◽  
Nor Yuziah Mohd Yunus ◽  
Siti Noorbaini Sarmin

The influence of soda-anthraquinone (AQ) pulping conditions on paper properties of oil palm empty fruit bunches was studied using Response Surface Methodology (RSM) based on Central Composite Design (CCD). The alkali charge, NaOH (A), pulping temperature (T), and pulping time (t) ranged between 20 and 30%, 160 and 180 °C, and 60 and 120 minutes, respectively. The mechanical properties evaluated for the handsheets produced were the tensile index, tearing index, bursting index, folding endurance, zero-span tensile strength, and the optical properties (brightness and opacity). The effects of soda-AQ pulping conditions on oil palm empty fruit bunch paper were elucidated by the regression models obtained. The optimum pulping condition were at 27.3% alkali charge, 160 °C, and 60 min that produced paper properties with 26.8 N.m/g tensile index, 7.95 mN.m2/g tearing index, 5.32 kPa.m2/g bursting index, 1.70 log10 folding endurance, 46.2 N zero-span tensile strength, 51.8% brightness, and 95.8% opacity.

2020 ◽  
Vol 305 ◽  
pp. 28-35
Author(s):  
Anslem Wong Tsu An ◽  
Sujan Debnath ◽  
Vincent Lee Chieng Chen ◽  
Moola Mohan Reddy ◽  
Alokesh Pramanik

In recent years, studies regarding natural fiber reinforced composites have been increased as they are biodegradable with good mechanical performance therefore can help to overcome the environmental issue. As the natural fibers are easy to obtain, many industries have started to make use of natural fiber composites which are light in weight and possess good mechanical properties. However, the natural fiber composites also possess certain limitations most importantly their high moisture absorption ability which makes them incompatible at degradable environment. The fiber constituents of natural fiber composite may have different type of interactions at different environmental conditions. In addition, the involvement of nanoparticles in the composite may be the solution to overcome the deficiencies. In this research, the degradation behaviour of Oil palm empty fruit bunch (OPEFB) fibers reinforced epoxy composites upon exposure to degradable environmental conditions and the effect of adding nanoparticles have been studied. The tensile tests were conducted before and after the exposure to different environmental conditions including plain water, moist soil, brine solution, and cooking oil. Results shows that the addition of 10wt% of OPEFB fiber to the epoxy composites had improved the mechanical tensile strength up to 15.97% and composites exposed to brine solution have the most prominent sign of degradation in mechanical properties in both composites with and without nanosilica. Nevertheless, the composites with nanosilica have shown up to 24.28% improvement in tensile strength after exposure to different environmental conditions. The improvement were attributed due to filling the voids of the composites with nanosilica and good interfacial adhesion between the nanofiller, fiber, and matrix.


2021 ◽  
Vol 34 ◽  
pp. 149-156
Author(s):  
Nik N. Nasri ◽  
Nazmi M. Nawi ◽  
Azhari S. Baharuddin ◽  
Saripa M. Lazim

The potential use of natural fibre extracted from oil palm empty fruit bunches has gained wide attention among researchers. This natural fibre comes from fibrous strands which form fibre bundle after shredding process at a mill. The measurement of tensile properties is important to understand the mechanical performance of this fibre bundle. This study was undertaken to determine the tensile properties of the fibre bundle from oil palm empty fruit bunch (OPEFB). Fibrous strands of the OPEFB extracted from shredded empty fruit bunches were twisted to form fibre bundle specimens at different diameters varying from 1 to 5 mm. The tensile properties measured in this study including tensile strength, tensile load and tensile modulus. The measurements were performed using Instron Universal Test Machine (IUTM) model 5000. From the results, it was found that the specimens at 1 and 5 mm in diameter required 71.25 and 429.68 N of the tensile load to break, respectively. The specimen with 1 mm in diameter recorded the highest tensile strength of 90.72 MPa while the specimen with 5 mm in diameter recorded only 21.88 MPa. The highest tensile modulus with value of 662.50 MPa was obtained from the specimen with 1 mm in diameter while the specimen with 5 mm in diameter had the tensile modulus value of 157.47 MPa. It was also found that the tensile strength and tensile modulus decreased when the diameter of the specimens increased. The findings reported in this study can serve as an engineering basis for the design specification in the development of the future in-silo composting machine.


2014 ◽  
Vol 6 (1) ◽  
pp. 15 ◽  
Author(s):  
Budi Tri Cahyana

This research aimed to get the physical and mechanical properties of non adhesive-particle board from oil palm empty fruit bunches. The oil palm empty fruit bunches were degradated to fibre and boiled in boiling water during 60 minute then dried in ± 2 weeks. The dried raw material was chopped to be fibre in 5 mesh, 10 mesh, and 16 mesh. It were complied into a mold and then hot pressed in 35 kgf/cm2 pressure during 10 minute with 3 of temperature variety, 160°C, 180°C and 200°C. The result showed that the average of particle board water content was 7,11 -  9,85 % and the density was 0,63 – 0,76 gr/cm3. The highest thickness swelling was 22,59 % in 10 mesh and 160 0C (a2b1) temperature of oil palm empty fruit bunches. The modulus of rupture was 211,67 kg/cm2  in 10 mesh and 180 0C (a2b2) temperature. The modulus of elasticity was 490,85 kg/cm2 in 10 mesh and 160 0C (a2b1) temperature. The tensile strength was 7,49 kg/cm2 in 5 mesh and 200 0C (a1b3) temperature. The average of physical and mechanical properties such as water content, density, modulus of rupture, tensile strength were fulfill the SNI requirement, while the average of thickness swelling and modulus of elasticity were not fulfill the SNI requirement.Keywords: oil palm empty fruit bunches, particle board


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1544 ◽  
Author(s):  
Fathirrahman Ibrahim ◽  
Denesh Mohan ◽  
Mohd Shaiful Sajab ◽  
Saiful Bahari Bakarudin ◽  
Hatika Kaco

In this study, lignin has been extracted from oil palm empty fruit bunch (EFB) fibers via an organosolv process. The organosolv lignin obtained was defined by the presence of hydroxyl-containing molecules, such as guaiacyl and syringyl, and by the presence of phenolic molecules in lignin. Subsequently, the extracted organosolv lignin and graphene nanoplatelets (GNP) were utilized as filler and reinforcement in photo-curable polyurethane (PU), which is used in stereolithography 3D printing. The compatibility as well as the characteristic and structural changes of the composite were identified through the mechanical properties of the 3D-printed composites. Furthermore, the tensile strength of the composited lignin and graphene shows significant improvement as high as 27%. The hardness of the photo-curable PU composites measured by nanoindentation exhibited an enormous improvement for 0.6% of lignin-graphene at 92.49 MPa with 238% increment when compared with unmodified PU.


2017 ◽  
Vol 25 (3) ◽  
pp. 161-170
Author(s):  
Henny Lydiasari ◽  
Ari Yusman Manalu ◽  
Rahmi Karolina

The potency of oil palm empty fruit bunches (OPEFB) fibers as one of the by-products of processing oil palm is increasing significantly so that proper management is needed in reducing environmental impact. One of the utilization of OPEFB fibers is as a substitution material in construction which usually the material is derived from non-renewable mining materials so that the number is increasingly limited. Therefore, it is necessary to study to know the performance of OPEFB fiber in making construction products especially concrete. In this case, the experiment was conducted using experimental method with variation of fiber addition by 0%, 10%, 15%, 20%, 25%, and 30%. Each specimen was tested by weight, slump value, compressive strength, tensile strength, elasticity and crack length. As the results, the variation of fibers addition by 10%, decrease of slump value is 7%, concrete weight is 3% and crack length is 8% while increase of the compressive strength is 2.7% and the modulus of elasticity is 33.3% but its tensile strength decreased insignificantly by 0.05% . Furthermore, the addition of fibers above 10% to 30% decreased compressive strength is still below 10% and tensile strength below 2% while the weight of concrete, slump value and crack length decreased. Therefore, the addition of 10% can replace the performance of concrete without fiber but the addition of above 10% can still be used on non-structural concrete.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
J. Sahari ◽  
M. A. Maleque

The mechanical properties of oil palm shell (OPS) composites were investigated with different volume fraction of OPS such as 0%, 10%, 20%, and 30% using unsaturated polyester (UPE) as a matrix. The results presented that the tensile strength and tensile modulus of the UPE/OPS composites increased as the OPS loading increased. The highest tensile modulus of UPE/OPS was obtained at 30 vol% of OPS with the value of 8.50 GPa. The tensile strength of the composites was 1.15, 1.17, and 1.18 times higher than the pure UPE matrix for 10, 20, and 30 vol% of OPS, respectively. The FTIR spectra showed the change of functional group of composites with different volume fractions of OPS. SEM analysis shows the filler pull-out present in the composites which proved the poor filler-matrix interfacial bonding.


Sign in / Sign up

Export Citation Format

Share Document