scholarly journals Changes in biometric, density, and microscopic features of Parrotia persica trees in longitudinal and radial directions of the stem

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3563-3574
Author(s):  
Ali Hassanpoor Tichi ◽  
Hadi Gholamiyan ◽  
Mojtaba Rezanezhad Divkolae

The biometric, density, and microscopic features of Parrotia persica species were investigated in this work. Three completely healthy P. persica trees were randomly felled. Three discs of 5 cm thickness were cut at three height levels (at breast height, 3 m, and 4.5 m) of each stem. The test specimens were sequentially taken from pith to bark. The biometric characteristics of the fiber and their density were analyzed. The microscopic features were studied according to the IAWA List of Hardwoods. It was found that all biometric factors of P. persica were decreased with increasing tree height from base to top. In contrast, these factors were also increased with the increase of distance from the pith toward the bark. Oven-dry density and basic density were decreased with an increase in the height along the tree stem. However, in the transverse direction, oven-dry density and basic density were increased from pith to bark. The anatomical study indicated that P. persica is a diffuse-porous hardwood that has distinct growth ring boundaries, heterogeneous rays, scalariform perforation, and alternative intervessel pits.

IAWA Journal ◽  
2017 ◽  
Vol 38 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Isabel Carrillo ◽  
Sofía Valenzuela ◽  
Juan Pedro Elissetche

An evaluation of 100 Eucalyptus globulus and 100 E. nitens trees (six years old) was made using the Pilodyn micro-drilling tool as an indicator of wood density. Thirty E. globulus and thirty E. nitens trees with high, medium and low density were selected and sampled with an increment borer at breast height for anatomical analysis using fibre tester equipment and the Resistograph device to generate detailed information about fibre biometry and anatomical wood properties of both species for hybrid development. Eucalyptus globulus trees had a basic wood density average of 478 kg/m3, while E. nitens had a density of 490 kg/m3. Both micro-drilling tools showed significant correlation coefficients with basic wood density. Correlation coefficients between basic wood density and Pilodyn values were negative, being -0.53 (p = 0.01) and -0.68 (p < 0.001) for E. globulus and E. nitens, respectively. For both species a positive correlation was observed between basic density and Resistograph mean amplitude; the correlation coefficient was 0.84 (p < 0.001) for E. globulus, and 0.85 (p < 0.001) for E. nitens. Eucalyptus nitens trees had a higher density and amplitude average and smaller Pilodyn values than E. globulus trees, while the latter had higher coarseness, fibre length and diameter at breast height than E. nitens trees. However, E. nitens showed larger differences between features of earlywood and latewood in a growth ring than E. globulus trees.


1995 ◽  
Vol 25 (12) ◽  
pp. 1928-1943 ◽  
Author(s):  
Risto Ojansuu ◽  
Matti Maltamo

The heartwood and sapwood of Pinussylvestris L. were analysed using simultaneous taper models for stem without bark and for heartwood. Sapwood area tapered monotonically from the base to the top of the stem. Below crown base the stem tapered more slowly than in the crown. The proportion of heartwood in the tree stem was higher in dense sample plots than in sparse ones and also decreased significantly with increasing relative size of a tree in a plot. Height at crown base correlated significantly with the proportion of heartwood, stand density, and relative size. Height at crown base was the most effective additional independent variable for predicting sapwood basal area at crown base when diameter at breast height and tree height were measured. Connected with diameter at breast height and tree height measurements, width of the sapwood at breast height explained significantly better sapwood and heartwood volumes than height at crown base.


2021 ◽  
Vol 13 (8) ◽  
pp. 4167
Author(s):  
David Kombi Kaviriri ◽  
Huan-Zhen Liu ◽  
Xi-Yang Zhao

In order to determine suitable traits for selecting high-wood-yield Korean pine materials, eleven morphological characteristics (tree height, basal diameter, diameter at breast height, diameter at 3 meter height, stem straightness degree, crown breadth, crown height, branch angle, branch number per node, bark thickness, and stem volume) were investigated in a 38-year-old Korean pine clonal trial at Naozhi orchard. A statistical approach combining variance and regression analysis was used to extract appropriate traits for selecting elite clones. Results of variance analysis showed significant difference in variance sources in most of the traits, except for the stem straightness degree, which had a p-value of 0.94. Moderate to high coefficients of variation and clonal repeatability ranged from 10.73% to 35.45% and from 0.06% to 0.78%, respectively. Strong significant correlations on the phenotypic and genotypic levels were observed between the straightness traits and tree volume, but crown breadth was weakly correlated to the volume. Four principal components retaining up to 80% of the total variation were extracted, and stem volume, basal diameter, diameter at breast height, diameter at 3 meter height, tree height, and crown height displayed high correlation to these components (r ranged from 0.76 to 0.98). Based on the Type III sum of squares, tree height, diameter at breast height, and branch number showed significant information to explain the clonal variability based on stem volume. Using the extracted characteristics as the selection index, six clones (PK105, PK59, PK104, PK36, PK28, and K101) displayed the highest Qi values, with a selection rate of 5% corresponding to the genetic gain of 42.96% in stem volume. This study provides beneficial information for the selection of multiple traits for genetically improved genotypes of Korean pine.


IAWA Journal ◽  
2014 ◽  
Vol 35 (2) ◽  
pp. 158-169 ◽  
Author(s):  
Zhao Rongjun ◽  
Yao Chunli ◽  
Cheng Xianbao ◽  
Lu Jianxiong ◽  
Fei Benhua ◽  
...  

The anatomical characteristics, chemical composition, and physical and mechanical properties of fast-growing Populus × euramericana cv. ‘74/76’ juvenile wood were investigated. Four- to five-year-old clonal plantation trees were harvested from two different experimental sites in the suburbs of Beijing. The Shunyi site had black alkali soil with a planting density of 4 × 6 m and the Miyun site had sandy loam soil with a planting density of 3 × 5 m. The test results showed that the poplar trees from the two sites were both fast growing, with poplar at Shunyi growing faster than at Miyun. There were no significant differences in wood properties between trees grown at the two sites. Fiber length at breast height varied from 872 to 1300 μm between growth rings, average fiber width varied from 21.0 to 25.5 μm and double wall thickness varied from 5.0 to 6.6 μm. Average cellulose, lignin and hemicellulose contents in the samples were 48.9%, 25.4%, and 18.8%, respectively. MFA was higher in the first two growth rings (20–25°), and then decreased rapidly to 12° close to the bark. The average air-dry density at breast height was 401 kg/m3 while the average MOE at breast height was 9.3 GPa. The trees showed large growth rates in both height and stem diameter during the growing season. However, wood properties of the juvenile poplar appeared to be similar to those of poplars with a slower growth rate.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 380
Author(s):  
Karol Bronisz ◽  
Szymon Bijak ◽  
Rafał Wojtan ◽  
Robert Tomusiak ◽  
Agnieszka Bronisz ◽  
...  

Information about tree biomass is important not only in the assessment of wood resources but also in the process of preparing forest management plans, as well as for estimating carbon stocks and their flow in forest ecosystems. The study aimed to develop empirical models for determining the dry mass of the aboveground parts of black locust trees and their components (stem, branches, and leaves). The research was carried out based on data collected in 13 stands (a total of 38 sample trees) of black locust located in western Poland. The model system was developed based on multivariate mixed-effect models using two approaches. In the first approach, biomass components and tree height were defined as dependent variables, while diameter at breast height was used as an independent variable. In the second approach, biomass components and diameter at breast height were dependent variables and tree height was defined as the independent variable. Both approaches enable the fixed-effect and cross-model random-effect prediction of aboveground dry biomass components of black locust. Cross-model random-effect prediction was obtained using additional measurements of two extreme trees, defined as trees characterized by the smallest and largest diameter at breast height in sample plot. This type of prediction is more precise (root mean square error for stem dry biomass for both approaches equals 77.603 and 188.139, respectively) than that of fixed-effects prediction (root mean square error for stem dry biomass for both approaches equals 238.716 and 206.933, respectively). The use of height as an independent variable increases the possibility of the practical application of the proposed solutions using remote data sources.


IAWA Journal ◽  
1994 ◽  
Vol 15 (3) ◽  
pp. 311-321 ◽  
Author(s):  
Ilona Peszlen

Anatomieal properties of three Euramerican hybrid poplar [Populus × euramericana (Dode) Guinier] clones, the Italian 'I-214' and the Hungarian 'Kopecky' and 'Koltay', were investigated. Six trees from each clone were sampled from plantations (aged 15 and 10 years) at two sites in Hungary. Disks were removed at breast height from each tree to study the effect of age on variation of anatomical properties. Along the eastern radius, vesscl and fibre parameters were measured for each growth ring using an image analyser.


2010 ◽  
Vol 59 (1-6) ◽  
pp. 1-7 ◽  
Author(s):  
G. P. S. Dhillon ◽  
Avtar Singh ◽  
Pritpal Singh ◽  
D. S. Sidhu

Abstract Results from clonal trials of Populus deltoides conducted in two distinct agroclimatic regions of Punjab in northwestern India are reported and discussed. Sixteen clones were evaluated at Hambran and Bathinda where commonly grown clone ‘G-48’ was considered as control. Significant differences among clones (P < 0.001) were observed for diameter at breast height (DBH), tree height and volume at the age of four and six years under both the site conditions. Clone ‘L-48’ ranked first for volume at six year age at both sites and was followed by clone ‘Ranikhet’. The respective superiority for volume of these clones over control was 44.8 and 23.2 per cent at Hambran and 72.5 and 30.7 per cent at Bathinda. All growth traits registered significantly higher values at Hambran in comparison to those at Bathinda. Clone x site interaction was also significant (P < 0.001). The clones ‘L-168’, ‘154/86’, ‘Solan-z’ and ‘170/88’ experienced huge fluctuation in ranking between sites for volume at 6-year age. The DBH and height showed significant and positive correlation with each other and with tree volume at all the age combinations. The clonal mean heritability was quite high both at Hambran (0.73-0.86) and Bathinda (0.80-0.95). The genetic advance were the highest for volume (33.34-64.26%) and the lowest (10.65-22.79%) in case of height.


2021 ◽  
pp. 97-105

Background: The current challenge is to reduce the uncertainties in obtaining accurate and reliable data of carbon stock changes and emission factors essential for reporting national inventories. Improvements in above ground biomass estimation can also help account for changes in carbon stock in forest areas that may potentially participate in the Reducing emissions from deforestation and forest degradation and other initiatives. Current objectives for such estimates need a unified approach which can be measurable, reportable, and verifiable. This might result to a geographically referenced biomass density database for Sudanese forests that would reduce uncertainties in estimating forest aboveground biomass. The main objective: of this study is to assess potential of some selected forest variables for modeling carbon sequestration for Acacia seyal, vr. Seyal, Acacia seyal, vr. fistula, Acacia Senegal. The specific objectives include development of empirical allometric models for forest biomass estimation, estimation of carbon sequestration for these tree species, estimation of carbon sequestration per hectare and comparing the amount with that reported to the region. A total of 10 sample trees for biomass and carbon determination were selected for each of the three species from El Nour Natural Forest Reserve of the Blue Nile State, Sudan. Data of diameter at breast height, total tree height, tree crown diameter, crown height, and upper stem diameters were measured. Then sample trees were felled and sectioned to their components, and weighed. Subsamples were selected from each component for oven drying at 105 ˚C. Finally allometric models were developed and the aboveground dry weight (dwt) and carbon sequestered per hector were calculated. The results: presents biomass equations, biomass expansion factor and wood density that developed for the trees. In case of inventoried wood volume, corrections for biomass expansion factor and wood density value were done, and new values are suggested for use to convert wood volume to biomass estimates. The results also, indicate that diameter at breast height, crown diameter and tree height are good predictors for estimation of tree dwt and carbon stock. Conclusion: The developed allometric equations in this study gave better estimation of dwt than default value. The average carbon stock was found to be 22.57 t/ha.


2012 ◽  
Vol 94 (4) ◽  
pp. 188-191 ◽  
Author(s):  
Megumi Ishida ◽  
Satoshi Naoi ◽  
Yasumasa Watanabe ◽  
Akinori Tsuzuku ◽  
Masaya Aoki

2016 ◽  
Vol 58 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Katarzyna Kaźmierczak ◽  
Bogna Zawieja

AbstractThe paper presents an attempt to apply measurable traits of a tree – crown projection area, crown length, diameter at breast height and tree height for classification of 135-year-old oak (QuercusL.) trees into Kraft classes. Statistical multivariate analysis was applied to reach the aim. Empirical material was collected on sample plot area of 0.75 ha, located in 135-year-old oak stand. Analysis of dimensional traits of oaks from 135-year-old stand allows quite certain classification of trees into three groups: pre-dominant, dominant and co-dominant and dominated ones. This seems to be quite promising, providing a tool for the approximation of the biosocial position of tree with no need for assessment in forest. Applied analyses do not allow distinguishing trees belonging to II and III Kraft classes. Unless the eye-estimation-based classification is completed, principal component analysis (PCA) method provided simple, provisional solution for grouping trees from 135-year-old stand into three over-mentioned groups. Discriminant analysis gives more precise results compared with PCA. In the analysed stand, the most important traits for the evaluation of biosocial position were diameter at breast height, crown projection area and height.


Sign in / Sign up

Export Citation Format

Share Document