scholarly journals Bending performance of cross-laminated timber-concrete composite slabs according to the composite method

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8227-8238
Author(s):  
Seung-Youp Baek ◽  
Yo-Jin Song ◽  
Seok-Hoon Yu ◽  
Dong-Hyeon Kim ◽  
Soon-Il Hong

Bending strength tests were conducted of cross-laminated timber (CLT)-concrete composite slabs according to the shear connection method and carbon fiber reinforced plastic (CFRP) reinforcement. The bending strength of the composite slab that was shear-connected with an epoxy adhesive was 17% higher than that of a composite slab that was shear-connected with a self-tapping screw. In addition, the CLT-concrete slip of the former composite slab was also measured as 20% lower than the latter under the same load, showing a behavior close to that of a full composite. Both shear connection methods generated a failure in a low load-deformation section when there was a defect in the outermost tensile laminae of the CLT. In contrast, the CFRP reinforcement in the tension part of the composite slab suppressed the failure at the defect in the outermost tensile laminae. This reinforcement effect increased the reliability of the bending performance of the composite slab by preventing the failure of the composite slab while in a constant failure mode. Furthermore, the slip of the composite slab decreased 49% after its reinforcement with CFRP, showing a behavior close to that of a full composite.

2013 ◽  
Vol 750-752 ◽  
pp. 59-63
Author(s):  
Jin Guang Zhang ◽  
Yi Zeng ◽  
Guo Liang Zhang ◽  
Yao Cheng Fang ◽  
Ye Fa Hu ◽  
...  

According to the structure and mechanical characteristics, a CFRP (carbon fiber reinforced plastic) periscope outer tube was designed. The parameters were determined such as fiber orientation angles, number of layers, proportion of fiber with different angles, and stacking sequences. A finite element model was built for the analysis of bending strength and modal. A CFRP periscope outer tube specimen was processed for the bending performance test. The results of simulation and experiments show that the CFRP periscope outer tube could meet the requirements.


2011 ◽  
Vol 8 (1) ◽  
pp. 29-34
Author(s):  
M. Youcef ◽  
M. Mimoune ◽  
F. Mimoune

This paper describes the reliability analysis of shear connection in composite beams with profiled steel sheeting. The profiled steel sheeting had transverse ribs perpendicular to the steel beam. The level of safety of shear connection, and failure modes were determinate. An extensive parametric study was conducted to study the effects on the safety and behaviour of shear connection by changing the profiled steel sheeting geometries, the diameter and height of headed stud, as well as the strength of concrete. We compared the level safety calculated using the American specification, British standard and European code for headed stud shear connectors in composite slabs with profiled steel sheeting perpendicular to the steel beam. It is found that the design overestimated the level safety of shear connection.


2012 ◽  
Vol 165 ◽  
pp. 339-345 ◽  
Author(s):  
M. Joshani ◽  
S.S.R. Koloor ◽  
Redzuan Abdullah

Composite slab construction using permanent cold-formed steel decking has become one of the most economical and industrialized forms of flooring systems in modern building structures. Structural performance of the composite slab is affected directly by the horizontal shear bond phenomenon at steel-concrete interface layer. This study utilizes 3D nonlinear finite element quasi-static analysis technique to analyze the shear bond damage and fracture mechanics of the composite slabs. Fracture by opening and sliding modes of the plain concrete over the corrugated steel decking had been modeled with concrete damaged plasticity model available in ABAQUS/Explicit module. The horizontal shear bond was simulated with cohesive element. Cohesive fracture properties such as fracture energy and initiation stress were derived from horizontal shear bond stress versus end slip curves. These curves were extracted from bending tests of narrow width composite slab specimens. Results of the numerical analyses match the experimental results accurately. This study demonstrated that the proposed finite element model and analysis procedure can predict the behavior of composite slabs accurately. The procedure can be used as a cheaper alternative to experimental work for investigating the ultimate strength and actual fracture and damage behavior of steel-concrete composite slab systems.


2021 ◽  
pp. 104-112
Author(s):  
V.O. Startsev ◽  
◽  
E.V. Nikolaev ◽  
A.M. Vardanyan ◽  
A.A. Nechaev ◽  
...  

The residual stresses in carbon fiber reinforced plastic (CFRP), based on VTkU-2.200 carbon fiber and VSC-14 cyanate ester resin, modified by nanoscale additives (astralen) were studied. Natural exposure was performed in a moderately cold climate. The influence of nanoadditives on mechanical and physical CFRP’s properties after 9 months of climatic testing was studied using the following properties: three-point bending strength, compression strength, coefficient of linear thermal expansion, glass transition temperature and residual stresses parameters. The increase of residual stresses after climatic testing was revealed.


2015 ◽  
Vol 21 (6) ◽  
pp. 720-732 ◽  
Author(s):  
Redzuan Abdullah ◽  
Ahmad Beng Hong Kueh ◽  
Izni S. Ibrahim ◽  
W. Samuel Easterling

Eurocode 4 design provisions specify two methods for the design of composite slabs, namely the m-k and the partial shear connection (PSC) methods. Currently, the m-k method includes the concrete thickness and the shear span of the slab as variables while the PSC method does not. This has resulted in a better accuracy for the m-k method when slabs with varying dimensions are considered. It is demonstrated in this paper that the horizontal shear bond stress varies with the ratio of shear span to effective depth of slab, defined as the slenderness. To include such an effect, a linear shear bond-slenderness equation is proposed. Using the proposed relationship, a linear interpolation of shear bond strength based on two configurations, determined from the outcomes of the bending tests for compact and slender slabs, has been satisfactorily performed. The shear bond strength obtained from this interpolation can be used in collaboration with the existing PSC method, such that the accuracy of the prediction of the composite slab capacity can be considerably improved, the validity of which has been verified with published results from literatures.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ryoichi Chiba

An analytical solution is derived for one-dimensional transient heat conduction in a composite slab consisting of n layers, whose heat transfer coefficient on an external boundary is an arbitrary function of time. The composite slab, which has thermal contact resistance at n-1 interfaces, as well as an arbitrary initial temperature distribution and internal heat generation, convectively exchanges heat at the external boundaries with two different time-varying surroundings. To obtain the analytical solution, the shifting function method is first used, which yields new partial differential equations under conventional types of external boundary conditions. The solution for the derived differential equations is then obtained by means of an orthogonal expansion technique. Numerical calculations are performed for two composite slabs, whose heat transfer coefficient on the heated surface is either an exponential or a trigonometric function of time. The numerical results demonstrate the effects of temporal variations in the heat transfer coefficient on the transient temperature field of composite slabs.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2551 ◽  
Author(s):  
Jing Lv ◽  
Tianhua Zhou ◽  
Hanheng Wu ◽  
Liurui Sang ◽  
Zuoqian He ◽  
...  

A composite slab comprised of self-compacting rubber lightweight aggregate concrete (SCRLC) and profiled steel sheeting is a new type of structural element with a series of superior properties. This paper presents an experimental research and finite element analysis (FEA) of the flexural behavior of composite slabs consisting of SCRLC to develop a new floor system. Four composite slabs specimens with different shear spans (450 mm and 800 mm) and SCRLC (0% and 30% in rubber particles substitution ratio) are prepared, and the flexural properties including failure modes, deflection at mid-span, profiled steel sheeting, and concrete surface stain at mid-span and end slippage are investigated by four-point bending tests. The experimental results indicate that applying SCRLC30 in composites slabs will improve the anti-cracking ability under the loading of composite slabs compared with composite slabs consisting of self-compacting lightweight aggregate concrete (SCLC). FEM on the flexural properties of SCRLC composites slabs show that the yield load, ultimate load, and deflection corresponding to the yield load and the ultimate load of composite slabs drop as the rubber particles content increases in SCRLC. The variation of SCRLC strength has less impact on the flexural bearing capacity of corresponding composite slabs. Based on the traditional calculated method of the ultimate bending moment of normal concrete (NC) composite slabs, a modified calculated method for the ultimate bending moment of SCRLC composite slabs is proposed.


2015 ◽  
Vol 813 ◽  
pp. 140-146
Author(s):  
Ning Ning Wang ◽  
Jia Ying Sun ◽  
Cheng Yan Zhu

In order to study on mechanical performance as the target of environmental corrosion resistance property, three kinds of glass fiber fabrics like biaxial warp knitted fabric, biaxial stitch-bonded felt and three axial warp knitted fabric were used to prepare textile reinforced composites in five layers laminated structure, which were soaked in seawater environment for 180 days. The result showed that, the surface appearance of textile reinforced composite became muddy and the color became darker, the tensile strength and bending strength of composites decline of the whole with the extension of soak time, the average loss rate of tensile and bending performance are respectively 24.8% and 56.5%, all of these provide the theoretical basis for researching and developing high-quality composite materials.


Sign in / Sign up

Export Citation Format

Share Document