scholarly journals Recent developments in biomass pelletization – A review

BioResources ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. 4451-4490 ◽  
Author(s):  
Wolfgang Stelte ◽  
Anand R. Sanadi ◽  
Lei Shang ◽  
Jens K. Holm ◽  
Jesper Ahrenfeldt ◽  
...  

The depletion of fossil fuels and the need to reduce greenhouse gas emissions has resulted in a strong growth of biomass utilization for heat and power production. Attempts to overcome the poor handling properties of biomass, i.e. its low bulk density and inhomogeneous structure, have resulted in an increasing interest in biomass densification technologies, such as pelletization and briquetting. The global pellet market has developed quickly, and strong growth is expected for the coming years. Due to an increase in demand for biomass, the traditionally used wood residues from sawmills and pulp and paper industry are not sufficient to meet future needs. An extended raw material base consisting of a broad variety of fibrous residues from agriculture and food industries, as well as thermal pre-treatment processes, provides new challenges for the pellet industry. Pellet production has been an established process for several decades, but only in the past five years has there been significant progress made to understand the key factors affecting pelletizing processes. A good understanding about the pelletizing process, especially the processing parameters and their effect on pellet formation and bonding are important for process and product optimization. The present review provides a comprehensive overview of the latest insights into the biomass pelletization processes, such as the forces involved in the pelletizing processes, modeling, bonding, and adhesive mechanisms. Furthermore, thermal pretreatment of the biomass, i.e. torrefaction and other thermal treatment to enhance the fuel properties of biomass pellets are discussed.

BioResources ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. 4451-4490 ◽  
Author(s):  
Wolfgang Stelte ◽  
Anand R. Sanadi ◽  
Lei Shang ◽  
Jens K. Holm ◽  
Jesper Ahrenfeldt ◽  
...  

The depletion of fossil fuels and the need to reduce greenhouse gas emissions has resulted in a strong growth of biomass utilization for heat and power production. Attempts to overcome the poor handling properties of biomass, i.e. its low bulk density and inhomogeneous structure, have resulted in an increasing interest in biomass densification technologies, such as pelletization and briquetting. The global pellet market has developed quickly, and strong growth is expected for the coming years. Due to an increase in demand for biomass, the traditionally used wood residues from sawmills and pulp and paper industry are not sufficient to meet future needs. An extended raw material base consisting of a broad variety of fibrous residues from agriculture and food industries, as well as thermal pre-treatment processes, provides new challenges for the pellet industry. Pellet production has been an established process for several decades, but only in the past five years has there been significant progress made to understand the key factors affecting pelletizing processes. A good understanding about the pelletizing process, especially the processing parameters and their effect on pellet formation and bonding are important for process and product optimization. The present review provides a comprehensive overview of the latest insights into the biomass pelletization processes, such as the forces involved in the pelletizing processes, modeling, bonding, and adhesive mechanisms. Furthermore, thermal pretreatment of the biomass, i.e. torrefaction and other thermal treatment to enhance the fuel properties of biomass pellets are discussed.


2018 ◽  
Vol 22 (11) ◽  
pp. 4-9
Author(s):  
V.M. Zaitchenko ◽  
K.O. Krysanova ◽  
V.A. Lavrenov

Paper presents the results of the experimental investigations of the pulp and paper industry’ wood waste processing method into high-quality synthesis gas. The main characteristics of feedstock (moisture and ash content, elemental composition, higher and lower heating values, volatile matter and fixed carbon content) and synthesis gas (yield, chemical composition, heating value and tar content) in dependence of the processing parameters are described. Processing is carried out by the two-stage pyrolytic conversion method, combining pyrolysis and subsequent high-temperature cracking of volatiles in the charcoal fixed bed. The principal scheme and results of the thermotechnical characteristics calculation of the pilot plant capacity of 300 kg/h of raw material (mechanical mixture of wood chips and bark with a moisture content of 48 %) are presented. The obtained results confirm the high efficiency of the method as applied to the processing of this type of waste.


2020 ◽  
Author(s):  
Santa Puke ◽  
◽  
Ruta Galoburda ◽  

Smoked sprats (Sprattus sprattus balticus) from the Baltic sea are one of the most popular processed fish products in Latvia. The amount of catching and demand is annually increasing. For producers, it is important to provide stable quality throughout the year, which sometimes is challenging due to many factors. Smoked fish quality depends not only on the seasonality, but also on the applied technologies. The aim of the current study was to review research findings about factors affecting the smoked fish quality. The databases of Science Direct, Web of Science, Wiley Online Journals and Google Scholar were searched. The first parameter that affects quality of fish till processing is raw material, its catching place and season, as well as whether it is fresh or frozen fish, that includes not only microbiological parameters, but also physical and chemical changes in fish depending on the storage conditions. The second parameter is the applied pre-treatment methods (using salt, acids) before processing, which can improve fish texture and make better result for smoked fish. The third parameter is the used technology for the fish processing, heat treatment methods use of wood chips or liquid smoke, or adjustment of smoking conditions. These all together make a lot of sensorial and textural changes in the final product. If any of these parameters is changed during processing, they can affect the smoked fish quality. Therefore, to ensure constant quality of smoked fish, in-depth knowledge of parameters is extremely important.


Bio-ethanol, a type of biofuel, is known as renewable energy source as it is derived from biomass as its raw material. Biomass can be found in abundance and sustainable i.e. sources are available continuously, unlike the currently used conventional fossil fuels where these sources are limited and depleting. In this study, biomass from fruit waste, banana peels, were utilized to produce bio-ethanol via hydrolysis and fermentation process. Banana peels, a lignocellulosic biomass, possesses compositions which favour these processes, where the banana peels are rich in cellulose content and low in lignin content. Mechanical pre-treatment of the banana peels was conducted to further ease the hydrolysis process by reducing the particle size of the biomass. Hydrolysis was carried out for 24 hours at 50ºC at different pH using sulfuric acid H2SO4 acid and sodium hydroxide NaOH as the base, to study the effect of pH on the hydrolysis process and hence the final bio-ethanol production, in terms of concentration. Fermentation of the hydrolysis products were carried out using glucose-yeast broth for 4 days at temperature of 35ºC. Water content in the bio-ethanol product from fermentation process was separated using rotary evaporator, prior to ethanol analysis using Gas Chromatography (GC-MS). Concentration of ethanol was found to be the highest at acidic pH conditions; pH 4 to 6. Lowest ethanol concentration was recorded at higher pH values, indicating alkaline conditions do not favour the hydrolysis process.


2018 ◽  
Vol 8 (1) ◽  
pp. 211-221
Author(s):  
Negar Aminoroayaei ◽  
Bahram Shahedi

In the current century, a suitable strategy is concerned for optimal consumption of energy, due to limited natural resources and fossil fuels for moving towards sustainable development and environmental protection. Given the rising cost of energy, environmental pollution and the end of fossil fuels, zero-energy buildings became a popular option in today's world. The purpose of this study is to investigate the factors affecting the design of zero-energy buildings, in order to reduce energy consumption and increase productivity, including plan form, climatic characteristics, materials, coverage etc. The present study collects the features of zero-energy building in Isfahan, which is based on the Emberger Climate View in the arid climate, by examining the books and related writings, field observations and using a descriptive method, in the form of qualitative studies. The results of the research showed that some actions are needed to save energy and, in general, less consumption of renewable energy by considering the climate and the use of natural conditions.


2018 ◽  
Vol 5 (6) ◽  
pp. 3-7 ◽  
Author(s):  
E.S. Popov ◽  
V.I. Gavrilyuk ◽  
N.V. Mukina ◽  
E.T. Kovalev ◽  
I.D. Drozdnik ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
pp. 243-259
Author(s):  
Yadhu N. Guragain ◽  
Praveen V. Vadlani

Lignocellulosic biomass feedstocks are promising alternatives to fossil fuels for meeting raw material needs of processing industries and helping transit from a linear to a circular economy and thereby meet the global sustainability criteria. The sugar platform route in the biochemical conversion process is one of the promising and extensively studied methods, which consists of four major conversion steps: pretreatment, hydrolysis, fermentation, and product purification. Each of these conversion steps has multiple challenges. Among them, the challenges associated with the pretreatment are the most significant for the overall process because this is the most expensive step in the sugar platform route and it significantly affects the efficiency of all subsequent steps on the sustainable valorization of each biomass component. However, the development of a universal pretreatment method to cater to all types of feedstock is nearly impossible due to the substantial variations in compositions and structures of biopolymers among these feedstocks. In this review, we have discussed some promising pretreatment methods, their processing and chemicals requirements, and the effect of biomass composition on deconstruction efficiencies. In addition, the global biomass resources availability and process intensification ideas for the lignocellulosic-based chemical industry have been discussed from a circularity and sustainability standpoint.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1273 ◽  
Author(s):  
Barry Mooney ◽  
Kyriakos Kourousis

Maraging steel is an engineering alloy which has been widely employed in metal additive manufacturing. This paper examines manufacturing and post-processing factors affecting the properties of maraging steel fabricated via laser powder bed fusion (L-PBF). It covers the review of published research findings on how powder quality feedstock, processing parameters, laser scan strategy, build orientation and heat treatment can influence the microstructure, density and porosity, defects and residual stresses developed on L-PBF maraging steel, with a focus on the maraging steel 300 alloy. This review offers an evaluation of the resulting mechanical properties of the as-built and heat-treated maraging steel 300, with a focus on anisotropic characteristics. Possible directions for further research are also identified.


Sign in / Sign up

Export Citation Format

Share Document