scholarly journals The Influence of Speed and Press Factor on Oriented Strand Board Performance in Continuous Press

BioResources ◽  
2014 ◽  
Vol 9 (4) ◽  
Author(s):  
Valentina D. Ciobanu ◽  
Octavia Zeleniuc ◽  
Adela-Eliza Dumitrascu ◽  
Badea Lepadatescu ◽  
Bogdan Iancu
Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4846
Author(s):  
Emmanouil Karagiannidis ◽  
Charles Markessini ◽  
Eleftheria Athanassiadou

Micro-Fibrillated Cellulose (MFC) is a new type of bio-based additive, coming from wood cellulose. It can compete and substitute oil derived chemicals in several application fields. In the present work, the use of micro-fibrillated cellulose, in waterborne adhesive systems applied in the manufacture of composite wood-based panels was evaluated. Research was conducted to test the potential of improving the performance of wood-based panel types such as particleboard, waferboard or randomly-oriented strand board and plywood, by the application of MFC and the substitution of conventional and non-renewable chemical compounds. The approaches followed to introduce MFC into the adhesive systems were three, i.e., MFC 2% suspension added during the adhesive resin synthesis, MFC 10% paste admixed with the already prepared adhesive resin and MFC 2% suspension admixed with the already prepared resin. It was found that MFC improves not only the performance of the final wood panel products but also the behaviour of the applied adhesive polymer colloids (e.g., rheology improvement), especially when admixed with the already prepared resins. Moreover, it was proven that when MFC is introduced into the adhesive resin system, there is a possibility of decreasing the resin consumption, by maintaining the board performance. MFC’s robustness to pH, shear and temperature makes it a highly interesting new additive for adhesive producers. In addition, its natural origin can give adhesive producers the opportunity to move over to more environmentally friendly product solutions.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Fabiane Salles Ferro ◽  
Amós Magalhães Souza ◽  
Isabella Imakawa de Araujo ◽  
Milena Maria Van Der Neut de Almeida ◽  
André Luis Christoforo ◽  
...  

This study aimed to evaluate the feasibility of using and influence of alternative wood species such as Cambará, Paricá, Pinus, and wood from first thinning operations on oriented strand board (OSB) physical and mechanical properties. Besides that, an alternative resin, castor oil-based polyurethane, was used to bond the particles, due to the better environmental performance when compared to other resins commonly used worldwide in OSB production. Physical properties such as the moisture content, thickness swelling, and water absorption, both after 2 and 24 hours of water immersion, and mechanical properties such as the modulus of elasticity and resistance in static bending, in major and minor axes, and internal bonding were investigated. All tests were performed according to European code EN 300:2006. Results showed the influence of wood species on physical and mechanical properties. Panels made with higher density woods such as Cambará presented better physical performance, while those made with lower density woods such as Pinus presented better mechanical properties. Besides that, strand particle geometry was also influenced on all physical and mechanical properties investigated. Therefore, the feasibility of using alternative species and wood from first thinning and with castor oil-based polyurethane resin in OSB production was verified.


2018 ◽  
Author(s):  
Samuel Azasu ◽  
Anthony Owusu-Ansah ◽  
Aashen Lalloo ◽  
Senyo Cudjoe

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 975
Author(s):  
Antonio Copak ◽  
Vlatka Jirouš-Rajković ◽  
Nikola Španić ◽  
Josip Miklečić

Oriented strand board (OSB) is a commonly used structural wood-based panel for walls and roof siding, but recently the industry has become interested in OSB as a substrate for indoor and outdoor furniture. Particleboard is mainly used in furniture productions and has become popular as a construction material due to its numerous usage possibilities and inexpensive cost. Moisture is one of the most important factors affecting wood-based panel performance and the post-treatment conditions affected their affinity to water. When OSB and particleboard are used as substrates for coatings, their surface characteristics play an important role in determining the quality of the final product. Furthermore, roughness can significantly affect the interfacial phenomena such as adsorption, wetting, and adhesion which may have an impact on the coating performance. In this research particleboard and OSB panels were sanded, re-pressed and IR heated and the influence of surface treatments on hardness, roughness, wetting, water, and water vapour absorption was studied. Results showed that sanding improved the wetting of particleboard and OSB with water. Moreover, studied surface treatments increased water absorption and water penetration depth of OSB panels, and re-pressing had a positive effect on reducing the water vapour absorption of particleboard and OSB panels.


2021 ◽  
pp. 1358863X2098760
Author(s):  
Elizabeth C Lefferts ◽  
Alexander J Rosenberg ◽  
Georgios Grigoriadis ◽  
Sang Ouk Wee ◽  
Stephen Kerber ◽  
...  

Firefighting is associated with an increased risk for a cardiovascular (CV) event, likely due to increased CV strain. The increase in CV strain during firefighting can be attributed to the interaction of several factors such as the strenuous physical demand, sympathetic nervous system activation, increased thermal burden, and the environmental exposure to smoke pollutants. Characterizing the impact of varying thermal burden and pollutant exposure on hemodynamics may help understand the CV burden experienced during firefighting. The purpose of this study was to examine the hemodynamic response of firefighters to training environments created by pallets and straw; oriented strand board (OSB); or simulated fire/smoke (fog). Twenty-three firefighters had brachial blood pressure measured and central blood pressure and hemodynamics estimated from the pressure waveform at baseline, and immediately and 30 minutes after each scenario. The training environment did not influence the hemodynamic response over time (interaction, p > 0.05); however, OSB scenarios resulted in higher pulse wave velocity and blood pressure (environment, p < 0.05). In conclusion, conducting OSB training scenarios appears to create the largest arterial burden in firefighters compared to other scenarios in this study. Environmental thermal burden in combination with the strenuous exercise, and psychological and environmental stress placed on firefighters should be considered when designing fire training scenarios and evaluating CV risk.


2020 ◽  
Vol 70 (3) ◽  
pp. 283-292
Author(s):  
Daniel Way ◽  
Frederick A. Kamke ◽  
Arijit Sinha

Abstract Development of moisture gradients within wood and wood-based composites can result in irreversible moisture-induced damage. Accelerated weathering (AW), generally employing harsh environmental conditions, is a common tool for assessing moisture durability of wood composite products. Use of milder AW conditions, such as cyclic changes in relative humidity (RH), may be of interest to the wood-based composites industry in assessing moisture durability under more realistic conditions. The primary objective of this study was to determine whether moisture profile development in oriented strand board and plywood during cyclic RH changes could be reasonably predicted with a simple moisture transport model, which may be practical for wood-based composite industry members seeking to develop new AW protocols. The diffusion model based on Fick's second law with empirically determined moisture transport parameters fits the experimental data reasonably well for the purpose of screening RH parameters.


Sign in / Sign up

Export Citation Format

Share Document