scholarly journals A Maximization Problem in Tropical Mathematics: A Complete Solution and Application Examples

Informatica ◽  
2016 ◽  
Vol 27 (3) ◽  
pp. 587-606 ◽  
Author(s):  
Nikolai Krivulin
2002 ◽  
Vol 6 (1) ◽  
pp. 85-100
Author(s):  
Raffaele Caterina

“A system of private ownership must provide for something more sophisticated than absolute ownership of the property by one person. A property owner needs to be able to do more than own it during his lifetime and pass it on to someone else on his death.”1 Those who own things with a long life quite naturally feel the urge to deal in segments of time. Most of the owner's ambitions in respect of time can be met by the law of contract. But contract does not offer a complete solution, since contracts create only personal rights. Certain of the owner's legitimate wishes can be achieved only if the law allows them to be given effect in rem—that is, as proprietary rights. Legal systems have responded differently to the need for proprietary rights limited in time. Roman law created usufruct and other iura in re aliena; English law created different legal estates. Every system has faced similar problems. One issue has been the extent to which the holder of a limited interest should be restricted in his or her use and enjoyment in order to protect the holders of other interests in the same thing. A common core of principles regulates the relationship between those who hold temporary interests and the reversioners. For instance, every system forbids holder of the possessory interest to damage the thing arbitrarily. But other rules are more controversial. This study focuses upon the rules which do not forbid, but compel, certain courses of action.


Author(s):  
Nguyen N. Tran ◽  
Ha X. Nguyen

A capacity analysis for generally correlated wireless multi-hop multi-input multi-output (MIMO) channels is presented in this paper. The channel at each hop is spatially correlated, the source symbols are mutually correlated, and the additive Gaussian noises are colored. First, by invoking Karush-Kuhn-Tucker condition for the optimality of convex programming, we derive the optimal source symbol covariance for the maximum mutual information between the channel input and the channel output when having the full knowledge of channel at the transmitter. Secondly, we formulate the average mutual information maximization problem when having only the channel statistics at the transmitter. Since this problem is almost impossible to be solved analytically, the numerical interior-point-method is employed to obtain the optimal solution. Furthermore, to reduce the computational complexity, an asymptotic closed-form solution is derived by maximizing an upper bound of the objective function. Simulation results show that the average mutual information obtained by the asymptotic design is very closed to that obtained by the optimal design, while saving a huge computational complexity.


Author(s):  
Dan Bodoh ◽  
Anthony Blakely ◽  
Terry Garyet

Abstract Since failure analysis (FA) tools originated in the design-for-test (DFT) realm, most have abstractions that reflect a designer's viewpoint. These abstractions prevent easy application of diagnosis results in the physical world of the FA lab. This article presents a fault diagnosis system, DFS/FA, which bridges the DFT and FA worlds. First, it describes the motivation for building DFS/FA and how it is an improvement over off-the-shelf tools and explains the DFS/FA building blocks on which the diagnosis tool depends. The article then discusses the diagnosis algorithm in detail and provides an overview of some of the supporting tools that make DFS/FA a complete solution for FA. It also presents a FA example where DFS/FA has been applied. The example demonstrates how the consideration of physical proximity improves the accuracy without sacrificing precision.


2021 ◽  
Vol 11 (14) ◽  
pp. 6401
Author(s):  
Kateryna Czerniachowska ◽  
Karina Sachpazidu-Wójcicka ◽  
Piotr Sulikowski ◽  
Marcin Hernes ◽  
Artur Rot

This paper discusses the problem of retailers’ profit maximization regarding displaying products on the planogram shelves, which may have different dimensions in each store but allocate the same product sets. We develop a mathematical model and a genetic algorithm for solving the shelf space allocation problem with the criteria of retailers’ profit maximization. The implemented program executes in a reasonable time. The quality of the genetic algorithm has been evaluated using the CPLEX solver. We determine four groups of constraints for the products that should be allocated on a shelf: shelf constraints, shelf type constraints, product constraints, and virtual segment constraints. The validity of the developed genetic algorithm has been checked on 25 retailing test cases. Computational results prove that the proposed approach allows for obtaining efficient results in short running time, and the developed complex shelf space allocation model, which considers multiple attributes of a shelf, segment, and product, as well as product capping and nesting allocation rule, is of high practical relevance. The proposed approach allows retailers to receive higher store profits with regard to the actual merchandising rules.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 69230-69243 ◽  
Author(s):  
Affaf Shahid ◽  
Ahmad Almogren ◽  
Nadeem Javaid ◽  
Fahad Ahmad Al-Zahrani ◽  
Mansour Zuair ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 7545
Author(s):  
Nikolai Bardarov ◽  
Vladislav Todorov ◽  
Nicole Christoff

The need to identify wood by its anatomical features requires a detailed analysis of all the elements that make it up. This is a significant problem of structural wood science, the most general and complete solution of which is yet to be sought. In recent years, increasing attention has been paid to the use of computer vision methods to automate processes such as the detection, identification, and classification of different tissues and different tree species. The more successful use of these methods in wood anatomy requires a more precise and comprehensive definition of the anatomical elements, according to their geometric and topological characteristics. In this article, we conduct a detailed analysis of the limits of variation of the location and grouping of vessels in the observed microscopic samples. The present development offers criteria and quantitative indicators for defining the terms shape, location, and group of wood tissues. It is proposed to differentiate the quantitative indicators of the vessels depending on their geometric and topological characteristics. Thus, with the help of computer vision technics, it will be possible to establish topological characteristics of wood vessels, the extraction of which would be used to develop an algorithm for the automatic classification of tree species.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yaoxin Li ◽  
Jing Liu ◽  
Guozheng Lin ◽  
Yueyuan Hou ◽  
Muyun Mou ◽  
...  

AbstractIn computer science, there exist a large number of optimization problems defined on graphs, that is to find a best node state configuration or a network structure, such that the designed objective function is optimized under some constraints. However, these problems are notorious for their hardness to solve, because most of them are NP-hard or NP-complete. Although traditional general methods such as simulated annealing (SA), genetic algorithms (GA), and so forth have been devised to these hard problems, their accuracy and time consumption are not satisfying in practice. In this work, we proposed a simple, fast, and general algorithm framework based on advanced automatic differentiation technique empowered by deep learning frameworks. By introducing Gumbel-softmax technique, we can optimize the objective function directly by gradient descent algorithm regardless of the discrete nature of variables. We also introduce evolution strategy to parallel version of our algorithm. We test our algorithm on four representative optimization problems on graph including modularity optimization from network science, Sherrington–Kirkpatrick (SK) model from statistical physics, maximum independent set (MIS) and minimum vertex cover (MVC) problem from combinatorial optimization on graph, and Influence Maximization problem from computational social science. High-quality solutions can be obtained with much less time-consuming compared to the traditional approaches.


Philosophia ◽  
2021 ◽  
Author(s):  
Stefan Rinner

AbstractIn this paper, I will present a puzzle for logical analyses, such as Russell’s analysis of definite descriptions and Recanati’s analysis of ‘that’-clauses. I will argue that together with Kripke’s disquotational principles connecting sincere assent and belief such non-trivial logical analyses lead to contradictions. Following this, I will compare the puzzle about logical analysis with Frege’s puzzle about belief ascriptions. We will see that although the two puzzles do have similarities, the solutions to Frege’s puzzle cannot be applied mutatis mutandis to the puzzle about logical analysis. Hence, to say it with Kripke, the main thesis of this paper is that the puzzle is a puzzle. A complete solution to the puzzle promises a better understanding of both logical analyses and belief ascriptions.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4300 ◽  
Author(s):  
Hoon Lee ◽  
Han Seung Jang ◽  
Bang Chul Jung

Achieving energy efficiency (EE) fairness among heterogeneous mobile devices will become a crucial issue in future wireless networks. This paper investigates a deep learning (DL) approach for improving EE fairness performance in interference channels (IFCs) where multiple transmitters simultaneously convey data to their corresponding receivers. To improve the EE fairness, we aim to maximize the minimum EE among multiple transmitter–receiver pairs by optimizing the transmit power levels. Due to fractional and max-min formulation, the problem is shown to be non-convex, and, thus, it is difficult to identify the optimal power control policy. Although the EE fairness maximization problem has been recently addressed by the successive convex approximation framework, it requires intensive computations for iterative optimizations and suffers from the sub-optimality incurred by the non-convexity. To tackle these issues, we propose a deep neural network (DNN) where the procedure of optimal solution calculation, which is unknown in general, is accurately approximated by well-designed DNNs. The target of the DNN is to yield an efficient power control solution for the EE fairness maximization problem by accepting the channel state information as an input feature. An unsupervised training algorithm is presented where the DNN learns an effective mapping from the channel to the EE maximizing power control strategy by itself. Numerical results demonstrate that the proposed DNN-based power control method performs better than a conventional optimization approach with much-reduced execution time. This work opens a new possibility of using DL as an alternative optimization tool for the EE maximizing design of the next-generation wireless networks.


Sign in / Sign up

Export Citation Format

Share Document