Levels of Interleukin 4 and Immunoglobulin E in Cord Blood Umbilical Mothers of Children of Allergic

2061 ◽  
Vol 4 (3) ◽  
Author(s):  
Ligia A Rodríguez A
2011 ◽  
Vol 51 (1) ◽  
pp. 12
Author(s):  
Frengky Sutanto ◽  
Rocky Wilar ◽  
Diana Devi Sondakh

Background The clinical syndrome of atopy is associated v.ith the production of immunoglobulin E (lgE) in response to antigenic stimulation as part of a type I hypersensitivity reaction. Since early prevention is regarded as an important cornerstone in the management of atopic diseases, the identification of reliable markers such as IgE and interleukin 4 (IL-4) in detecting individuals at risk are of major interest.Objective To determine whether cord blood IgE and IL-4 levels can be used as an predictor of atopy in newborns with a family history of atopic diseases.Methods We conducted a cross-sectional study on healthy-term newborns in the neonatal ward at R.D. Kandou Hospital from June to August 2010. A total of 50 healthy newborns in atopic and non-atopic groups were examined for cord blood IgE and IIA levels.Result The mean cord blood ILA levels in the atopic and non-atopic groups were 0.1 μg/mL (SD 0.08) and 0.1 μg/mL (SD 0.16) (P=0.359), respectively. The mean cord blood IgE levels in the atopic and non-atopic groups were 2.2 IU/mL (SD 1.98) and 0.5 IU/mL (SD 0.29) (P<0.00l), respectively. A point-biserial correlation coefficient analysis showed no significant correlation between ILA levels and family history of atopic disease (rpb=0.098), and a weak correlation between IgE levels and family history of atopic disease (rpb=0.54).Conclusions Cord blood IgE and IL-4 levels should not be used to distinguish newborns with a family history of atopic diseases from those without.


2021 ◽  
Vol 22 (4) ◽  
pp. 1553
Author(s):  
Sung Won Lee ◽  
Hyun Jung Park ◽  
Jungmin Jeon ◽  
Yun Hoo Park ◽  
Tae-Cheol Kim ◽  
...  

The SWItch (SWI)3-related gene (SRG3) product, a SWI/Sucrose Non-Fermenting (SNF) chromatin remodeling subunit, plays a critical role in regulating immune responses. We have previously shown that ubiquitous SRG3 overexpression attenuates the progression of Th1/Th17-mediated experimental autoimmune encephalomyelitis. However, it is unclear whether SRG3 overexpression can affect the pathogenesis of inflammatory skin diseases such as atopic dermatitis (AD), a Th2-type immune disorder. Thus, to elucidate the effects of SRG3 overexpression in AD development, we bred NC/Nga (NC) mice with transgenic mice where SRG3 expression is driven by the β-actin promoter (SRG3β-actin mice). We found that SRG3β-actin NC mice exhibit increased AD development (e.g., a higher clinical score, immunoglobulin E (IgE) hyperproduction, and an increased number of infiltrated mast cells and basophils in skin lesions) compared with wild-type NC mice. Moreover, the severity of AD pathogenesis in SRG3β-actin NC mice correlated with expansion of interleukin 4 (IL4)-producing basophils and mast cells, and M2 macrophages. Furthermore, this accelerated AD development is strongly associated with Treg cell suppression. Collectively, our results have identified that modulation of SRG3 function can be applied as one of the options to control AD pathogenesis.


2001 ◽  
Vol 69 (12) ◽  
pp. 7743-7752 ◽  
Author(s):  
L. Spencer ◽  
L. Shultz ◽  
T. V. Rajan

ABSTRACT Interleukin-4 (IL-4) has been shown to be crucial in parasite expulsion in several gastrointestinal nematode infection models. Data from both epidemiological studies with humans and experimental infections in animals imply a critical role for the type II helper response, dominated by IL-4, in host protection. Here we utilized inbred mice on two distinct backgrounds to document the involvement of IL-4 in the clearance of a primary infection of Brugiafrom the murine host. Our data from infections of IL-4 receptor−/− and Stat6−/− mice further indicate that IL-4 exerts its effects by activating the Stat6 molecule in host target cells, a finding which links clearance requirements of a gastrointestinal tract-dwelling nematode with those of a tissue-dwelling nematode. Additionally, we show that the requirements for IL-4 receptor binding and Stat6 activation extend to accelerated clearance of a secondary infection as well. The data shown here, including analysis of cell populations at the site of infection and infection of immunoglobulin E (IgE)−/− mice, lead us to suggest that deficiencies in eosinophil recruitment and isotype switching to IgE production may be at least partially responsible for slower parasite clearance in the absence of IL-4.


PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0234413
Author(s):  
Tamar A. Smith-Norowitz ◽  
Yvonne Huang ◽  
Jeffrey Loeffler ◽  
Elliot Klein ◽  
Yitzchok M. Norowitz ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2131 ◽  
Author(s):  
Dong Eun Kim ◽  
Kyoung-jin Min ◽  
Min-Jong Kim ◽  
Sang-Hyun Kim ◽  
Taeg Kyu Kwon

Hispidulin (4′,5,7-trihydroxy-6-methoxyflavone) is a natural compound derived from traditional Chinese medicinal herbs, and it is known to have an anti-inflammatory effect. Here, we investigated the effect of hispidulin on the immunoglobulin E (IgE)-mediated allergic responses in rat basophilic leukemia (RBL)-2H3 mast cells. When RBL-2H3 cells were sensitized with anti-dinitrophenyl (anti-DNP) IgE and subsequently stimulated with DNP-human serum albumin (HSA), histamine and β-hexosaminidase were released from the cells by degranulation of activated mast cells. However, pretreatment with hispidulin before the stimulation of DNP-HSA markedly attenuated release of both in anti-DNP IgE-sensitized cells. Furthermore, we investigated whether hispidulin inhibits anti-DNP IgE and DNP-HSA-induced passive cutaneous anaphylaxis (PCA), as an animal model for Type I allergies. Hispidulin markedly decreased the PCA reaction and allergic edema of ears in mice. In addition, activated RBL-2H3 cells induced the expression of inflammatory cytokines (tumor necrosis factor-α and interleukin-4), which are critical for the pathogenesis of allergic disease, through the activation of c-Jun N-terminal kinase (JNK). Inhibition of JNK activation by hispidulin treatment reduced the induction of cytokine expression in the activated mast cells. Our results indicate that hispidulin might be a possible therapeutic candidate for allergic inflammatory diseases through the suppression of degranulation and inflammatory cytokines expression.


2010 ◽  
Vol 88 (10) ◽  
pp. 1010-1016 ◽  
Author(s):  
Qiang Du ◽  
Gan-Zhu Feng ◽  
Li Shen ◽  
Jin Cui ◽  
Jian-Kang Cai

Paeonol, the main active component isolated from Moutan Cortex, possesses extensive pharmacological activities such as anti-inflammatory, anti-allergic, and immunoregulatory effects. In the present study, we examined the effects of paeonol on airway inflammation and hyperresponsiveness in a mouse model of allergic asthma. BALB/c mice sensitized and challenged with ovalbumin were administered paeonol intragastrically at a dose of 100 mg/kg daily. Paeonol significantly suppressed ovalbumin-induced airway hyperresponsiveness to acetylcholine chloride. Paeonol administration significantly inhibited the total inflammatory cell and eosinophil count in bronchoalveolar lavage fluid. Treatment with paeonol significantly enhanced IFN-γ levels and decreased interleukin-4 and interleukin-13 levels in bronchoalveolar lavage fluid and total immunoglobulin E levels in serum. Histological examination of lung tissue demonstrated that paeonol significantly attenuated allergen-induced lung eosinophilic inflammation and mucus-producing goblet cells in the airway. These data suggest that paeonol exhibits anti-inflammatory activity in allergic mice and may possess new therapeutic potential for the treatment of allergic bronchial asthma.


1994 ◽  
Vol 180 (2) ◽  
pp. 727-732 ◽  
Author(s):  
H Kimata ◽  
M Fujimoto

We studied the effects of growth hormone (GH), insulin-like growth factor I (IGF-I), IGF-II, and insulin on human immunoglobulin E (IgE) and IgG4 production. GH and IGF-I induced IgE and IgG4 production by normal donors' mononuclear cells (MNC) depleted of sIgE+ and sIgG4+ B cells without affecting IgM, IgG1, IgG2, IgG3, IgA1, or IgA2 production, whereas IGF-II and insulin failed to do so. GH-induced IgE and IgG4 production was specific, and was not mediated by IGF-I, interleukin 4 (IL-4), or IL-13, since it was blocked by anti-GH antibody (Ab), but not by anti-IGF-I Ab, anti-IL-4 Ab, or anti-IL-13 Ab. Conversely, IGF-I-induced IgE and IgG4 production was blocked by anti-IGF-I Ab, but not by anti-GH Ab, anti-IL-4 Ab, or anti-IL-13 Ab. Moreover, interferon alpha (IFN-alpha) or IFN-gamma, which counteracted IL-4-and IL-13-induced IgE and IgG4 production, had no effect on induction by GH or IGF-I. In contrast to MNC, GH or IGF-I failed to induce IgE and IgG4 production by purified sIgE-, sIgG4- B cells. However, in the presence of anti-CD40 monoclonal antibody (mAb), GH or IGF-I induced IgE and IgG4 production by these cells. Purified sIgE+, but not sIgE-, B cells from atopic patients spontaneously produced IgE. GH or IGF-I with anti-CD40 mAb failed to enhance IgE production by sIgE+ B cells, whereas they induced IgE production by sIgE- B cells. Similarly, whereas GH or IGF-I with anti-CD40 mAb failed to enhance IgG4 production by sIgG4+ B cells from atopic patients, they induced IgG4 production by sIgG4- B cells. Again, neither IgE nor IgG4 induction was blocked by anti-IL-4 Ab or anti-IL-13 Ab. These results indicate that GH and IGF-I induce IgE and IgG4 production by class switching in an IL-4- and IL-13-independent mechanism.


Sign in / Sign up

Export Citation Format

Share Document