scholarly journals Hispidulin Inhibits Mast Cell-Mediated Allergic Inflammation through Down-Regulation of Histamine Release and Inflammatory Cytokines

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2131 ◽  
Author(s):  
Dong Eun Kim ◽  
Kyoung-jin Min ◽  
Min-Jong Kim ◽  
Sang-Hyun Kim ◽  
Taeg Kyu Kwon

Hispidulin (4′,5,7-trihydroxy-6-methoxyflavone) is a natural compound derived from traditional Chinese medicinal herbs, and it is known to have an anti-inflammatory effect. Here, we investigated the effect of hispidulin on the immunoglobulin E (IgE)-mediated allergic responses in rat basophilic leukemia (RBL)-2H3 mast cells. When RBL-2H3 cells were sensitized with anti-dinitrophenyl (anti-DNP) IgE and subsequently stimulated with DNP-human serum albumin (HSA), histamine and β-hexosaminidase were released from the cells by degranulation of activated mast cells. However, pretreatment with hispidulin before the stimulation of DNP-HSA markedly attenuated release of both in anti-DNP IgE-sensitized cells. Furthermore, we investigated whether hispidulin inhibits anti-DNP IgE and DNP-HSA-induced passive cutaneous anaphylaxis (PCA), as an animal model for Type I allergies. Hispidulin markedly decreased the PCA reaction and allergic edema of ears in mice. In addition, activated RBL-2H3 cells induced the expression of inflammatory cytokines (tumor necrosis factor-α and interleukin-4), which are critical for the pathogenesis of allergic disease, through the activation of c-Jun N-terminal kinase (JNK). Inhibition of JNK activation by hispidulin treatment reduced the induction of cytokine expression in the activated mast cells. Our results indicate that hispidulin might be a possible therapeutic candidate for allergic inflammatory diseases through the suppression of degranulation and inflammatory cytokines expression.

2012 ◽  
Vol 40 (06) ◽  
pp. 1257-1270 ◽  
Author(s):  
Hui-Hun Kim ◽  
Jin-Su Yoo ◽  
Tae-Yong Shin ◽  
Sang-Hyun Kim

Allergic inflammatory diseases such as food allergy, asthma, sinusitis, and atopic dermatitis are increasing worldwide. In this study, we investigated the effects of aqueous extract of Mosla chinensis Max. (AMC) on mast cell-mediated allergic inflammation and studied the possible mechanism of this action. AMC inhibited compound 48/80-induced systemic and immunoglobulin E (IgE)-mediated local anaphylaxis. AMC reduced intracellular calcium levels and downstream histamine release from rat peritoneal mast cells activated by compound 48/80 or IgE. In addition, AMC decreased gene expression and secretion of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-8 in human mast cells. The inhibitory effect of AMC on cytokine expression was nuclear factor (NF)-κB dependent. Our results indicate that AMC inhibits mast cell-mediated allergic inflammatory reaction by suppressing histamine release and expression of proinflammatory cytokines and the involvement of calcium and NF-κB in these effects. AMC might be a possible therapeutic candidate for allergic inflammatory disorders.


2017 ◽  
Vol 214 (9) ◽  
pp. 2491-2506 ◽  
Author(s):  
Gökhan Cildir ◽  
Harshita Pant ◽  
Angel F. Lopez ◽  
Vinay Tergaonkar

Mast cells are unique tissue-resident immune cells that express an array of receptors that can be activated by several extracellular cues, including antigen–immunoglobulin E (IgE) complexes, bacteria, viruses, cytokines, hormones, peptides, and drugs. Mast cells constitute a small population in tissues, but their extraordinary ability to respond rapidly by releasing granule-stored and newly made mediators underpins their importance in health and disease. In this review, we document the biology of mast cells and introduce new concepts and opinions regarding their role in human diseases beyond IgE-mediated allergic responses and antiparasitic functions. We bring to light recent discoveries and developments in mast cell research, including regulation of mast cell functions, differentiation, survival, and novel mouse models. Finally, we highlight the current and future opportunities for therapeutic intervention of mast cell functions in inflammatory diseases.


2003 ◽  
Vol 198 (11) ◽  
pp. 1717-1727 ◽  
Author(s):  
Kotaro Suzuki ◽  
Hiroshi Nakajima ◽  
Kei Ikeda ◽  
Yuko Maezawa ◽  
Akira Suto ◽  
...  

Increasing evidence has revealed that mast cell–derived tumor necrosis factor α (TNF-α) plays a critical role in a number of inflammatory responses by recruiting inflammatory leukocytes. In this paper, we investigated the regulatory role of interleukin 4 (IL-4) in TNF-α production in mast cells. IL-4 inhibited immunoglobulin E–induced TNF-α production and neutrophil recruitment in the peritoneal cavity in wild-type mice but not in signal transducers and activators of transcription 6 (Stat6)–deficient mice. IL-4 also inhibited TNF-α production in cultured mast cells by a Stat6-dependent mechanism. IL-4–Stat6 signaling induced TNF-α mRNA destabilization in an AU-rich element (ARE)–dependent manner, but did not affect TNF-α promoter activity. Furthermore, IL-4 induced the expression of tristetraprolin (TTP), an RNA-binding protein that promotes decay of ARE-containing mRNA, in mast cells by a Stat6-dependent mechanism, and the depletion of TTP expression by RNA interference prevented IL-4–induced down-regulation of TNF-α production in mast cells. These results suggest that IL-4–Stat6 signaling induces TTP expression and, thus, destabilizes TNF-α mRNA in an ARE-dependent manner.


Author(s):  
L.М. Bubyr

Today, despite the large number of research reports on food allergy, there are some issues associated with its systemic character and complicated diagnosis that requiring in-depth study of this condition. The factors to be elucidated and studied in greater detail include etiologically significant risk factors for food allergy as well as the complex immunological pathogenetic mechanisms of its development. Thus, the aim of our work was to investigate the immunological status of children with inflammatory diseases of the upper gastrointestinal tract, who had a history of food allergies. Materials and methods. The study included 34 children aged 6 – 15 years with gastroduodenal pathology and food allergy manifestations, whose parents voluntarily consented to their participating in the research. All children underwent a comprehensive allergic and immunological examination. Results and discussion. The distribution of children with gastroduodenal pathology, who had a history of allergic response when consuming food, by immunoglobulin E level, was almost uniform. Analysis of cytokine status has shown a prevalence of pro-inflammatory cytokine - interleukin-4 in more than half (56.3%) of the patients with IgE-mediated allergic reactions to food vs. 38.9% of children in the comparison group. Over the study, it has been found out that elevated levels of the thymus-associated regulatory chemokine - TARC / CCL17 made up 38.3% of the total number of subjects. Conclusion. The results of the study point out the persistence of food allergic manifestations in children with chronic gastroduodenal pathology, regardless of IgE or non-IgE mediated reactions that has been confirmed by the presence of allergic inflammatory markers as interleukin-4 and TARC / CCL-17 chemokine in the deficiency of anti-inflammatory cytokine interleukin-10, which in turn necessitates the thorough monitoring of the cases and implementation of elimination measures into clinical protocols for managing this group of patients.


2021 ◽  
Vol 22 (4) ◽  
pp. 1553
Author(s):  
Sung Won Lee ◽  
Hyun Jung Park ◽  
Jungmin Jeon ◽  
Yun Hoo Park ◽  
Tae-Cheol Kim ◽  
...  

The SWItch (SWI)3-related gene (SRG3) product, a SWI/Sucrose Non-Fermenting (SNF) chromatin remodeling subunit, plays a critical role in regulating immune responses. We have previously shown that ubiquitous SRG3 overexpression attenuates the progression of Th1/Th17-mediated experimental autoimmune encephalomyelitis. However, it is unclear whether SRG3 overexpression can affect the pathogenesis of inflammatory skin diseases such as atopic dermatitis (AD), a Th2-type immune disorder. Thus, to elucidate the effects of SRG3 overexpression in AD development, we bred NC/Nga (NC) mice with transgenic mice where SRG3 expression is driven by the β-actin promoter (SRG3β-actin mice). We found that SRG3β-actin NC mice exhibit increased AD development (e.g., a higher clinical score, immunoglobulin E (IgE) hyperproduction, and an increased number of infiltrated mast cells and basophils in skin lesions) compared with wild-type NC mice. Moreover, the severity of AD pathogenesis in SRG3β-actin NC mice correlated with expansion of interleukin 4 (IL4)-producing basophils and mast cells, and M2 macrophages. Furthermore, this accelerated AD development is strongly associated with Treg cell suppression. Collectively, our results have identified that modulation of SRG3 function can be applied as one of the options to control AD pathogenesis.


2007 ◽  
Vol 204 (2) ◽  
pp. 253-258 ◽  
Author(s):  
Zoulfia Allakhverdi ◽  
Michael R. Comeau ◽  
Heidi K. Jessup ◽  
Bo-Rin Park Yoon ◽  
Avery Brewer ◽  
...  

Compelling evidence suggests that the epithelial cell–derived cytokine thymic stromal lymphopoietin (TSLP) may initiate asthma or atopic dermatitis through a dendritic cell–mediated T helper (Th)2 response. Here, we describe how TSLP might initiate and aggravate allergic inflammation in the absence of T lymphocytes and immunoglobulin E antibodies via the innate immune system. We show that TSLP, synergistically with interleukin 1 and tumor necrosis factor, stimulates the production of high levels of Th2 cytokines by human mast cells (MCs). We next report that TSLP is released by primary epithelial cells in response to certain microbial products, physical injury, or inflammatory cytokines. Direct epithelial cell–mediated, TSLP-dependent activation of MCs may play a central role in “intrinsic” forms of atopic diseases and explain the aggravating role of infection and scratching in these diseases.


2018 ◽  
Author(s):  
Elin Rönnberg ◽  
Avan Ghaib ◽  
Carlos Ceriol ◽  
Mattias Enoksson ◽  
Michel Arock ◽  
...  

AbstractBackgroundEpithelial cytokines, including IL-33 and TSLP, have attracted interest because of their roles in chronic allergic inflammation-related conditions such as asthma. Mast cells are one of the major targets of IL-33, to which they respond by secreting cytokines. Most studies performed thus far have investigated the acute effects of IL-33 on mast cells.ObjectiveThe objective of this study is to investigate how acute versus prolonged exposure of human mast cells to IL-33 and TSLP affects mediator synthesis and IgE-mediated activation.MethodsHuman lung mast cells (HLMCs), cord blood-derived mast cells (CBMCs), and the ROSA mast cell line were used for this study. Surface receptor expression and the levels of mediators were measured after treatment with IL-33 and/or TSLP.ResultsIL-33 induced the acute release of cytokines. Prolonged exposure to IL-33 increased while TSLP reduced intracellular levels of tryptase. Acute IL-33 treatment strongly potentiated IgE-mediated activation. In contrast, four days of exposure to IL-33 decreased IgE-mediated activation, an effect that was accompanied by a reduction in FcεRI expression.Conclusion & Clinical RelevanceWe show that IL-33 plays dual roles for mast cell functions. The acute effect includes cytokine release and the potentiation of IgE-mediated degranulation, whereas prolonged exposure to IL-33 reduces IgE-mediated activation. We conclude that mast cells act quickly in response to the alarmin IL-33 to initiate an acute inflammatory response, whereas extended exposure to IL-33 during prolonged inflammation reduces IgE-mediated responses. This negative feedback effect suggests the presence of a novel IL-33 mediated regulatory pathway that modulates IgE-induced human mast cell responses.


2017 ◽  
Vol 137 (11) ◽  
pp. 2445-2447 ◽  
Author(s):  
Elizabeth S. Robinson ◽  
Paul Alves ◽  
Muhammad M. Bashir ◽  
Majid Zeidi ◽  
Rui Feng ◽  
...  

2020 ◽  
Vol 21 (4) ◽  
pp. 1498 ◽  
Author(s):  
David O. Lyons ◽  
Nicholas A. Pullen

Mast cells are often regarded through the lens of IgE-dependent reactions as a cell specialized only for anti-parasitic and type I hypersensitive responses. However, recently many researchers have begun to appreciate the expansive repertoire of stimuli that mast cells can respond to. After the characterization of the interleukin (IL)-33/suppression of tumorigenicity 2 (ST2) axis of mast cell activation—a pathway that is independent of the adaptive immune system—researchers are revisiting other stimuli to induce mast cell activation and/or subsequent degranulation independent of IgE. This discovery also underscores that mast cells act as important mediators in maintaining body wide homeostasis, especially through barrier defense, and can thus be the source of disease as well. Particularly in the gut, inflammatory bowel diseases (Crohn’s disease, ulcerative colitis, etc.) are characterized with enhanced mast cell activity in the context of autoimmune disease. Mast cells show phenotypic differences based on tissue residency, which could manifest as different receptor expression profiles, allowing for unique mast cell responses (both IgE and non-IgE mediated) across varying tissues as well. This variety in receptor expression suggests mast cells respond differently, such as in the gut where immunosuppressive IL-10 stimulates the development of food allergy or in the lungs where transforming growth factor-β1 (TGF-β1) can enhance mast cell IL-6 production. Such differences in receptor expression illustrate the truly diverse effector capabilities of mast cells, and careful consideration must be given toward the phenotype of mast cells observed in vitro. Given mast cells’ ubiquitous tissue presence and their capability to respond to a broad spectrum of non-IgE stimuli, it is expected that mast cells may also contribute to the progression of autoimmune disorders and other disease states such as metastatic cancer through promoting chronic inflammation in the local tissue microenvironment and ultimately polarizing toward a unique Th17 immune response. Furthermore, these interconnected, atypical activation pathways may crosstalk with IgE-mediated signaling differently across disorders such as parasitism, food allergies, and autoimmune disorders of the gut. In this review, we summarize recent research into familiar and novel pathways of mast cells activation and draw connections to clinical human disease.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4178
Author(s):  
Ji-Ye Lim ◽  
Ji-Hyun Lee ◽  
Bo-Ri Lee ◽  
Mi Ae Kim ◽  
Young-Mi Lee ◽  
...  

Mast cells are effector cells that initiate allergic inflammatory immune responses by inducing inflammatory mediators. Boehmeria nivea (Linn.) Gaudich is a natural herb in the nettle family Urticaceae that possesses numerous pharmacological properties. Despite the various pharmacological benefits of Boehmeria nivea, its effects on allergic inflammation have not yet been determined. Here, we investigated the effect of the ethanol extract of Boehmeria nivea (BNE) on degranulation rat basophilic leukemia (RBL)-2H3 mast cells stimulated with anti-dinitrophenyl (anti-DNP) and bovine serum albumin (BSA) during immunoglobulin E (IgE)-mediated allergic immune response. The results showed inhibition of the release of β-hexosaminidase and histamine from the cells. BNE suppressed pro-inflammatory cytokines (Tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, and IL-6) and reduced T helper (Th)2 cytokine IL-4 expression and/or secretion correlated with the downregulation of p38, extracellular signal-regulated kinases (ERK) mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) signaling pathways in treated RBL-2H3 mast cells. In passive cutaneous anaphylaxis, treatment with BNE during IgE-mediated local allergic reaction triggered a reduction in mouse ear pigmentation and thickness. Taken together, these results indicated that BNE suppressed mast cell-mediated inflammation, suggesting that BNE might be a candidate for the treatment of various allergic disorders.


Sign in / Sign up

Export Citation Format

Share Document