scholarly journals Multi-bit structure improvement methods for multiplier devices of matrix type

Author(s):  
Natalia Vozna ◽  
Yaroslav Nykolaychuk ◽  
Alina Davletova

The article proposes methods for improving the structures of matrix multipliers of multi-digit numbers. Advanced single-bit total adders with paraphrase switched inputs and paraphrase outputs are used, intended as components of high-speed matrix multipliers. Based on the use of such single-bit adders, the structures of matrix multipliers are proposed, characterized by 2 times increased speed, 5 times reduced structural complexity compared to known multipliers based on classical single-bit adders. Optimization of structures of multi-bit matrix multipliers is offered. Comparative estimates of structural and temporal complexities of their circuit implementations depending on the bit size of multiplied binary numbers are given. The use of optimized circuit solutions of matrix multipliers can significantly improve the system characteristics of complex computing devices with many such components in the crystals of microelectronic technologies.

Author(s):  
A. F. Chernyavsky ◽  
A. A. Kolyada ◽  
S. Yu. Protasenya

The article is devoted to the problem of creation of high-speed neural networks (NN) for calculation of interval-index characteristics of a minimally redundant modular code. The functional base of the proposed solution is an advanced class of neural networks of a final ring. These neural networks perform position-modular code transformations of scalable numbers using a modified reduction technology. A developed neural network has a uniform parallel structure, easy to implement and requires the time expenditures of the order (3[log2b]+ [log2k]+6tsum  close to the lower theoretical estimate. Here b and k is the average bit capacity and the number of modules respectively; t sum is the duration of the two-place operation of adding integers. The refusal from a normalization of the numbers of the modular code leads to a reduction of the required set of NN of the finite ring on the (k – 1) component. At the same time, the abnormal configuration of minimally redundant modular coding requires an average k-fold increase in the interval index module (relative to the rest of the bases of the modular number system). It leads to an adequate increase in hardware expenses on this module. Besides, the transition from normalized to unregulated coding reduces the level of homogeneity of the structure of the NN for calculating intervalindex characteristics. The possibility of reducing the structural complexity of the proposed NN by using abnormal intervalindex characteristics is investigated.


2021 ◽  
Vol 1016 ◽  
pp. 1423-1429
Author(s):  
Kaweewat Worasaen ◽  
Andreas Stark ◽  
Karuna Tuchinda ◽  
Piyada Suwanpinij

A matrix type high speed steel YXR3 designed for a combination of wear resistance and toughness is investigated for its mechanical properties after hardening by deep cryogenic treatment follow by tempering. The deep cryogenic quenching carried out at -200 °C for 36 hours and the single step tempering results in an obvious improvement in wear resistance while balancing the toughness, comparing with the conventional quenching followed by a double tempering treatment. The quantitative image analysis reveals little difference in the MC carbide size distribution between tempering at different temperatures. The synchrotron high energy XRD confirms the MC type carbide with some evolution in its orientation together with tempered martensite approaching the BCC structure at higher temperatures. In contrary to the conventional quenching and tempering, the lowest tempering temperature at 200 °C yields a moderate drop in hardness with increase in surface toughness proportionally while exhibiting exceptional wear resistance. Such thermal cycle can be recommended for the industry both for the practicality and improved tool life.


2016 ◽  
Author(s):  
Sorokin Alexey ◽  
Ivanov Alexander ◽  
Deichuli Petr ◽  
Dranichnikov Aleksandr ◽  
Van Drie Alan ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Jia Liu ◽  
Xuesong Jin

According to a large amount of the test data, the mid and high frequency vibrations of high-speed bogies are very notable, especially in the 565~616 Hz range, which are just the passing frequencies corresponding to the 22nd to 24th polygonal wear of the wheel. In order to investigate the main cause of wheel higher-order polygon formation, a 3D flexible model of a Chinese high-speed train bogie is developed using the explicit finite element method. The results show that the couple vibration of bogie and wheelset may lead to the high-order wears of wheel. In order to reduce the coupled resonance of the wheelset and the bogie frame, the effects of the stiffness and damping of the primary suspensions, wheelset axle radius, and bogie frame strength on the vibration transmissibility are discussed carefully. The numerical results show that the resonance peaks in high frequency range can be reduced by reducing the stiffness of axle box rotary arm joint, reducing the wheelset axle radius or strengthening the bogie frame location. The related results may provide a reference for structure improvement of the existing bogies and structure design of the new high-speed bogies.


2013 ◽  
Vol 44 ◽  
pp. 612-621 ◽  
Author(s):  
Y. Zhang ◽  
C.L. Hu ◽  
Z. Zhao ◽  
A.P. Li ◽  
X.L. Xu ◽  
...  

2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Fugui Xie ◽  
Xin-Jun Liu

In this paper, a novel parallel kinematic mechanism (PKM) with Schönflies motion has been proposed under the guidance of a graphical type synthesis method. This PKM is composed of four identical arms and a single platform and has high rotational capability. The single-platform structure used in the proposed PKM can reduce structural complexity, increase dynamic response. In addition, the composite parallelogram structure in each arm brings in better limb stiffness. Based on the proposed concept, optimal design is carried out to make the PKM realize its high rotational potential. In this process, an input transmission index (ITI) and an output transmission index (OTI) (the two indices can be used to numerically evaluate motion and force transmission performance of PKMs, respectively) are taken as the performance evaluation criteria. On this basis, some other indices are defined and the corresponding performance atlases are also plotted to investigate the potential workspace. Consequently, dimensional parameters of the discussed PKM are derived on the precondition that the rotational capability should reach at least ±90 deg, and the workspace has also been identified. Based on these foundations, a parallel robot X4 has been developed which can realize high-speed pick-and-place manipulation in industrial lines.


2014 ◽  
Vol 513-517 ◽  
pp. 2843-2846
Author(s):  
Hai Qiang Ning ◽  
Jin Sheng Dou ◽  
Xing Hua Huang ◽  
Yuan Wen Xie

In order to solve cylinder-scraping of a four-cylinder high speed diesel engine, based on the measurement of piston temperature, the piston temperature field was numerically simulated by using temperature fitting method, the calculation results were well consistent with the measured temperature. By finite element analysis of piston thermal load based on the calculation results as temperature load, enlarging oil cooling cavity in the piston head was proposed to enhance cooling locally, which could effectively reduce temperature of the piston head and the first ring groove and avoid the occurrence of cylinder-scraping.


Sign in / Sign up

Export Citation Format

Share Document