The analysis of fracture development in the gas-saturated fossil coal for different conditions of the coal seam unloarding

2019 ◽  
pp. 26-37
Author(s):  
L.І. Stefanovich ◽  
◽  
V.V. Sobolev ◽  
D.V. Rudakov ◽  
N.V. Bilan ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Delong Zou ◽  
Xiang Zhang

When stratified mining is adopted in high-gas and extrathick coal seam, a large amount of pressure-relief gas of the lower layer flows into the upper layer goaf along the cracks in the layer, resulting in upper layer working face to frequently exceed the gas limit. And ordinary drilling can no longer meet the requirements of the pressure-relief gas drainage of the lower layer. The 205 working face of Tingnan Coal Mine is taken as the test background in this paper, and based on the “pressure-relief and flow-increase” effect of the lower layer under the action of mining stress during the upper layer mining, the gas drainage of kilometer directional drilling in lower layer is studied. According to the distribution characteristics of support pressure before and after the working face, the pressure-relief principle, fracture development characteristics, and gas migration law of the lower layered coal body are analyzed in the process of advancing the upper layered working face in the extrathick coal seam with high gas. The maximum depth of goaf damage is calculated theoretically, and the Flac3D numerical simulation of the failure deformation of the 205 working face floor is carried out. It is found that the maximum depth of plastic failure of the lower layer is about 13 m. According to the plastic deformation of the lower layer under different vertical depths and the movement of coal and rock mass, it is determined that the reasonable range of kilometer directional drilling in the lower layer is 6–9 m below the floor vertical depth. From 15 m to 45 m in the two parallel grooves, there is no fracture failure with a sharp increase or decrease in the displacement in the local range. Meanwhile, in this part, the roof falling behind is not easy to compaction, and the displacement of the floor is large, which does not cause plastic damage. The degree of pressure relief is more sufficient, and the permeability of the lower layer is good. Therefore, drilling should be arranged as much as possible along the working face in this tendency range. The determination of reasonable arrangement range of kilometer directional drilling in extrathick coal seam provides reference index and theoretical guidance for industrial test of working face and also provides new ideas for gas control of stratified mining face in high-gas and extrathick coal seam.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Taofeng Xie ◽  
Xiaoting Zhou ◽  
Qingya Wang ◽  
Shuai Cao ◽  
Huiming Cao ◽  
...  

For low-permeability coal seam, the gas extraction rate is relatively low. The repeated low-intensity shock wave can improve the permeability of coal and raise the rate of coal seam gas drainage. A simulation test platform was set up to carry out repeated low-intensity shock wave simulation experiment. Under the effect of repeated low-intensity shock wave, the development process of the macrofracture, pore evolution, and the law of microcrack propagation was analyzed to study the law of coal fracture propagation. Research shows that the expansion of the pore of the coal is made by the development of large, medium, and micropores by the repeated low-strength shock wave. The main contribution of the total pore volume increase comes from the micropore growth. The microcrack of the coal mainly begins to sprout and develops from the telocollinite where the fracture is more developed. With the increase of impact times, the microcracks extend to other components. Under the impact of different times, the fractal dimension of the coal sample increases with the increase in the number and length of cracks.


Processes ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 146 ◽  
Author(s):  
Chunlei Zhang ◽  
Lei Yu ◽  
Ruimin Feng ◽  
Yong Zhang ◽  
Guojun Zhang

Coal and gas outbursts are serious safety concerns in the Chinese coal industry. Mining of the upper or lower protective coal seams has been widely used to minimize this problem. This paper presents new findings from longwall mining-induced fractures, stress distribution changes in roof strata, strata movement and gas flow dynamics after the lower protective coal seam is extracted in a deep underground coal mine in Jincheng, China. Two Flac3D models with varying gob loading characteristics as a function of face advance were analyzed to assess the effect of gob behavior on stress relief in the protected coal seam. The gob behavior in the models is incorporated by applying variable force to the floor and roof behind the longwall face to simulate gob loading characteristics in the field. The influence of mining height on the stress-relief in protected coal seam is also incorporated. The stress relief coefficient and relief angle were introduced as two essential parameters to evaluate the stress relief effect in different regions of protected coal seam. The results showed that the rock mass above the protective coal seam can be divided into five zones in the horizontal direction, i.e. pre-mining zone, compression zone, expansion zone, recovery zone and re-compacted zone. The volume expansion or the dilation zone with high gas concentration is the best location to drill boreholes for gas drainage in both the protected coal seam and the protective coal seam. The research results are helpful to understand the gas flow mechanism around the coal seam and guide industry people to optimize borehole layouts in order to eliminate the coal and gas outburst hazard. The gas drainage programs are provided in the final section.


2020 ◽  
Vol 10 (8) ◽  
pp. 2874
Author(s):  
Xugang Lian ◽  
Yanjun Zhang ◽  
Hongyan Yuan ◽  
Chenlong Wang ◽  
Junting Guo ◽  
...  

The surface discontinuous deformation caused by coal mining has great damage to the ecological environment and threatens the safety of human lives. Focusing on the problem of discontinuous deformation (ground fissures and collapsed pits) in mining areas with a thick loess and thin bedrock, this paper uses a coal panel in southern Shanxi in China as research background, and uses field investigation, theoretical analysis and the particle flow code 2D (PFC2D) numerical simulation method to study the movement of overburden and discontinuous ground deformation of mining areas with a thick loess layer and a thin bedrock. The results show that with the continual advance of the working face, the failure of the overlying rock, the changing of force chain shape and the development of cracks under this geological and mining condition have their unique rules. This study analyzes the law of movement of overburden in coal seam mining, explains why discontinuous deformation of the surface occurs in case of a thick loess layer and thin bedrock, and provides reference for the prediction of fracture development under the same geological conditions and the application of the PFC2D in coal seam mining in different geological conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haibo Liu ◽  
Xucheng Xiao ◽  
Zhihang Shu

No. 21 coal seam is a full-thickness structured soft coal in Dengfeng coalfield. The coal seam gas-bearing capacity is high, and the permeability is poor, thus resulting in serious coal and gas outburst dynamic disasters. According to the gas geological conditions of Baoyushan Mine, No. 17 coal seam without outburst danger, which is 0.5 m thick and 23.4 m under No. 21 coal seam, was mined in advance as the lower protective seam. At the same time, a gas extraction roadway was constructed in No. 21 coal seam floor. Cross-layer boreholes were constructed to extract the pressure relief gas of No. 21 coal seam for comprehensive treatment of mine gas. The mobile deformation of the overburden coal and rock mass after mining No. 17 coal seam, the fracture development characteristics of No. 21 coal seam, the pressure relief gas migration of the coal seam, the gas extraction, and the outburst danger elimination were studied. The research findings showed the following: (1) after mining No. 17 coal seam, the overburden hard and extremely thick limestone roof sagged slowly, albeit leading to no craving zone. (2) The permeability of No. 21 coal seam was increased by about 394 times, from 0.0012 mD to 0.4732 mD. (3) After the extraction of pressure relief gas through the gas extraction roadway on the floor through the cross-layer borehole, the gas pressure of No. 21 coal seam decreased from 1.17 MPa to 0.12 MPa, while the gas content decreased from 9.74 m3/t to 3.1 m3/t, which suggested that the coal and gas outburst dynamic danger of No. 21 coal seam was totally eliminated and the goal of safe and efficient mining in the mine was realized.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shaodong Li ◽  
Gangwei Fan ◽  
Dongsheng Zhang ◽  
Shizhong Zhang ◽  
Liang Chen ◽  
...  

The high-pressure and water-rich confined aquifer occurring in the Ordovician limestone sequence poses great threats to the routine production of underground longwall mining. Considering the intense cooperation of mining disturbance and water pressure, water-conducting fractures within a coal seam floor can connect the lower aquifer and upper goaf, and this hydraulic behavior is considered the root of water inrush hazard and water loss or contamination. In this paper, the panel 4301 of the Longquan coal mine serves as the case where the panel works closely above the floor with high water pressure. By the combination of physical and numerical modelling approaches, the variation characteristics of fracture development and volumetric strain of floor rocks subjected to mining disturbance are analyzed. A numerical computation model is constructed based on the volumetric strain-permeability equation obtained by curve fitting, and on such basis, the impacts of different mining parameters on floor rock permeability are studied. The results show that the floor rocks experience fracture generation, extension, and convergence procedures as the workface advances along the longitudinal direction, and fractures appearing in front of the workface are more developed. In the whole process of coal seam extraction, the volumetric strain profile exhibits “Λ” shape and an inverted saddle shape before and after overburden strata collapse. By controlling a single variable, the paper reveals that panel height is of greater impact on floor permeability changes than panel length and panel width.


2014 ◽  
Vol 875-877 ◽  
pp. 1863-1870 ◽  
Author(s):  
Jian Liu ◽  
Jie Zhao ◽  
Ming Song Gao

By study on underlying coal and strata pressure-relief principle and the gas extraction technique under upper protective layer mining, we obtain the stress change and distribution law of underlying coal-rock mass. We analyze the deformation law and fracture development characteristics of underlying coal-rock mass movement. With mining proceeding ahead, the total floor coal and rock experiences compression deformation first, then expansion deformation and re-compaction of the continuous periodic destruction. Based on different development characteristics and status of underlying coal-rock mass, the underlying coal-rock mass under an effect of upper protective layer mining was divided into the floor heave fracture zone and the floor heave deformation zone in this paper. The permeability coefficient of change law of underlying the coal seam as follows: the original value-small decreasing-increasing greatly-reducing-stability at last. The field test for upper protective layer mining of Zhang-ji coal mine of Huainan shows that the effect of pressure relief of protected seam is very good. So it eliminates the risk of gas outburst, ensuring safety mining of the protected seam. The research has an important significance for safety and efficient production under similar exploitation conditions of low-permeability with high gas and outburst risk coal seam.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Feng Du ◽  
Kun Jiao ◽  
Zhanyuan Ma

In Datong mining area, CO and other harmful gases were discharged from the gob in the Jurassic overburden strata to the panel of Carboniferous coal seam. To this end, panel 8309 of Tongxin coal mine in Datong mining area was taken as the engineering background; the change law of CO concentration in the upper corner of the panel and the law of mining pressure were studied through field measurement, and the influence of periodic movement of key strata on the downward leakage law of harmful gases was analyzed. In this paper, the fracture law of the key strata and fracture development characteristics of overburden strata were further studied by the similar simulation test, and the influence of the periodic movement of the key strata on the pathway formation of gas downward leakage was analyzed. The results show that the main cause of harmful gas downward leakage in the Jurassic gob is through the fracture produced by the fracture of the higher key strata. If the higher key strata fractures in the coal mining in the Carboniferous system, through fracture connecting the Jurassic gob above the open-off cut and the upper part of the panel are formed, and effective pathways for gas downward leakage are generated. The fracture and rotation of the higher key strata are accompanied by the formation and disappearance of the effective pathway for gas downward leakage above the panel. Then the periodic change of harmful gas discharging to the panel is caused and consistent with the law of mining pressure.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hongbing Wang ◽  
Zhiheng Cheng ◽  
Tie Li ◽  
Liang Chen ◽  
Quanle Zou ◽  
...  

The aim of this study is to explore the coupling relationship between fractures in overlying strata and gas seepage fields for pressure relief during mining of outburst-prone coal seam groups and to quantitatively characterize the distribution characteristics of favorable areas for coalbed methane (CBM) drainage in mining-induced fractures of overlying strata. For these purposes, by taking Shaqu No. 1 Coal Mine (Lvliang City, Shanxi Province, China) as a research object, this research studied migration and caving characteristics of overlying strata by combining physical similar material simulation, numerical simulation, and field measurement. Moreover, this study analyzed spatial distribution patterns of mining-induced fractures in overlaying strata, quantitatively characterized distribution parameters of asymmetric-oblique-quadrilateral fracture development zones in overlying strata, and precisely divided areas favorable for CBM drainage. On this basis, evolution laws of an asymmetric fracture-seepage community in overlying strata in outburst-prone coal seam groups were obtained, thus optimizing design parameters for directional drilling in the fracture zone in overlying strata. The research results demonstrate that, due to mining-induced influences, strata present different migration and rupture patterns along rupture lines on both sides. Because of different rupture angles α and β, mining-induced fractures in overlying strata are distributed as an asymmetric-oblique-quadrilateral fracture development body in space. Furthermore, based on the coupling relationship between fracture development states and pressure-relief gas seepage in the fracture development zone in overlying strata of the 4305 rear working face in the mine, this research obtained rupture angles α ∈ [74, 90) and ß ∈ (70, 82] on both sides of the fracture development zone. Moreover, the intervals favorable for CBM drainage for pressure relief on both sides of the fracture development zone in overlying strata of 4305 rear working face in the mine were separately determined as xaj ≤ 22.68 m and 24 m ≤ xβj ≤ 37.8 m. If the gas drainage system is designed in this zone, it is of great significance to precise and efficient pressure-relief CBM drainage in the fracture zone and ensure production safety in the mining space.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xingping Lai ◽  
Bowei Liu ◽  
Pengfei Shan ◽  
Feng Cui ◽  
Yun Zhang ◽  
...  

A development of overlying strata fractures and an unknown distribution of the two zones, which results from a strong shock tendency roof short-distance coal seam group mining, are the main problems faced by Xiashijie Coal Mine. Consequently, an experiment has been conducted; here are the steps: designing an underlying strata development law and the two-zone distribution physical similarity simulation test under the short-distance coal seam group combined mining, using the BT-AE to comonitor the fracture development law and the distribution characteristics of the caving zone and the water-conducting fractured zone, and combining with 3DEC comparative analysis. The results show that after the coal seam mining is over, the number of overlying fractures increases with depth, controlled by the mining stress field in the direction of 115° west from north to west. The direction of overlying fracture is mainly concentrated in the area of 300° ~30°; the overlying fracture angles eventually develop to 81° and 74°, increasing by 15.7% and 8.8%, and the caving ratio and cracking ratio are 4.87 and 17.75. After comparing with the numerical calculation results, the reliability of the two zones obtained by the physical similarity simulation test is verified. The AE analysis results show that the “release-accumulate-release” energy evolution process of overlying rock fracture under mining conditions has a phased relationship with fracture expansion. The energy positioning results are consistent with the distribution of BT observation cracks, and the large energy events are mostly concentrated in the collapse zone, indicating that AE has the practicality of disaster warning. The results of this study provide scientific guidance for water-preserving mining under the combined mining of coal seams with a strong impact tendency roof in Xiashijie Coal Mine.


Sign in / Sign up

Export Citation Format

Share Document