scholarly journals Optimal damping of deviations of angular speeds of an eightsymetric space aircraft

2021 ◽  
Vol 27 (4) ◽  
pp. 21-31
Author(s):  
А.A. Stenin ◽  
◽  
V.P. Pasko ◽  
I.G. Drozdovych ◽  
M.O. Soldatova ◽  
...  

This paper considers the problem of optimal fuel consumption damping of sudden deviations of angular velocities of an axisymmetric spacecraft with a constant speed of rotation around the main axis of symmetry. This assumption has some practical significance and may be due to the creation of artificial gravity on the spacecraft. The idea of artificial gravity due to the rotation of an axisymmetric cylindrical spacecraft is based on the principle of equivalence of the force of gravity and the force of inertia. The urgency of the fuel consumption optimization problem is due to the presence of its limited stock onboard the spacecraft. The optimization problem is solved based on the maximum principle and the phase plane method. The authors of the article determine the structure of optimal fuel consumption processes with three levels of control, and the number of their switches depends on the initial conditions. Synthesized on the phase plane, the optimal switching curves divide the phase plane into eight curvilinear quadrants, which uniquely determine the values of the optimal control effects by the current values of the deviations of the angular velocities of the spacecraft. The problem of the possible presence of a delay in the control loop is proposed to be solved based on the Bess compensation method. To do this, the corresponding optimal curves of switching and disabling the controls are built as geometric locations of points remoted for the time of delay from the found curves of switching and the beginning of coordinates accordingly. It allows us to avoid the emergence of steady self-oscillations in a control contour and to provide a condition of keeping the spacecraft in a given final state after the completion of the stabilization process. Depending on the technical equipment of the spacecraft, two variants of the optimal damping algorithm are offered, namely: an autonomous device in the onboard control system of the spacecraft in the absence of a sufficiently powerful onboard computer, or the optimal damping algorithm, implemented entirely in the onboard computer of the spacecraft in case of its sufficient power.

2021 ◽  
Vol 16 (2) ◽  
pp. 1-23
Author(s):  
Zhao Li ◽  
Junshuai Song ◽  
Zehong Hu ◽  
Zhen Wang ◽  
Jun Gao

Impression regulation plays an important role in various online ranking systems, e.g. , e-commerce ranking systems always need to achieve local commercial demands on some pre-labeled target items like fresh item cultivation and fraudulent item counteracting while maximizing its global revenue. However, local impression regulation may cause “butterfly effects” on the global scale, e.g. , in e-commerce, the price preference fluctuation in initial conditions (overpriced or underpriced items) may create a significantly different outcome, thus affecting shopping experience and bringing economic losses to platforms. To prevent “butterfly effects”, some researchers define their regulation objectives with global constraints, by using contextual bandit at the page-level that requires all items on one page sharing the same regulation action, which fails to conduct impression regulation on individual items. To address this problem, in this article, we propose a personalized impression regulation method that can directly makes regulation decisions for each user-item pair. Specifically, we model the regulation problem as a C onstrained D ual-level B andit (CDB) problem, where the local regulation action and reward signals are at the item-level while the global effect constraint on the platform impression can be calculated at the page-level only. To handle the asynchronous signals, we first expand the page-level constraint to the item-level and then derive the policy updating as a second-order cone optimization problem. Our CDB approaches the optimal policy by iteratively solving the optimization problem. Experiments are performed on both offline and online datasets, and the results, theoretically and empirically, demonstrate CDB outperforms state-of-the-art algorithms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257958
Author(s):  
Miguel Navascués ◽  
Costantino Budroni ◽  
Yelena Guryanova

In the context of epidemiology, policies for disease control are often devised through a mixture of intuition and brute-force, whereby the set of logically conceivable policies is narrowed down to a small family described by a few parameters, following which linearization or grid search is used to identify the optimal policy within the set. This scheme runs the risk of leaving out more complex (and perhaps counter-intuitive) policies for disease control that could tackle the disease more efficiently. In this article, we use techniques from convex optimization theory and machine learning to conduct optimizations over disease policies described by hundreds of parameters. In contrast to past approaches for policy optimization based on control theory, our framework can deal with arbitrary uncertainties on the initial conditions and model parameters controlling the spread of the disease, and stochastic models. In addition, our methods allow for optimization over policies which remain constant over weekly periods, specified by either continuous or discrete (e.g.: lockdown on/off) government measures. We illustrate our approach by minimizing the total time required to eradicate COVID-19 within the Susceptible-Exposed-Infected-Recovered (SEIR) model proposed by Kissler et al. (March, 2020).


2021 ◽  
Vol 25 (2) ◽  
pp. 48-53
Author(s):  
B.P. Yur’ev ◽  
V.A. Dudko

A technology of processing chalk from the Lebedinskoye deposit into high quality lime by roasting in a rotary kiln is proposed. A procedure has been developed for the thermodynamic calculation of the specific heat of decomposition of carbonates contained in chalk. The material and heat balances of the operating rotary kiln have been compiled. All the main parameters of its operation and the optimal fuel consumption for chalk processing have been determined.


Author(s):  
Masoud Ansari ◽  
Amir Khajepour ◽  
Ebrahim Esmailzadeh

Vibration control has always been of great interest for many researchers in different fields, especially mechanical and civil engineering. One of the key elements in control of vibration is damper. One way of optimally suppressing unwanted vibrations is to find the best locations of the dampers in the structure, such that the highest dampening effect is achieved. This paper proposes a new approach that turns the conventional discrete optimization problem of optimal damper placement to a continuous topology optimization. In fact, instead of considering a few dampers and run the discrete optimization problem to find their best locations, the whole structure is considered to be connected to infinite numbers of dampers and level set topology optimization will be performed to determine the optimal damping set, while certain number of dampers are used, and the minimum energy for the system is achieved. This method has a few major advantages over the conventional methods, and can handle damper placement problem for complicated structures (systems) more accurately. The results, obtained in this research are very promising and show the capability of this method in finding the best damper location is structures.


2018 ◽  
Vol 5 (2) ◽  
pp. 171226 ◽  
Author(s):  
Faizan Ehsan Elahi ◽  
Ammar Hasan

Gene regulatory networks (GRNs) are quite large and complex. To better understand and analyse GRNs, mathematical models are being employed. Different types of models, such as logical, continuous and stochastic models, can be used to describe GRNs. In this paper, we present a new approach to identify continuous models, because they are more suitable for large number of genes and quantitative analysis. One of the most promising techniques for identifying continuous models of GRNs is based on Hill functions and the generalized profiling method (GPM). The advantage of this approach is low computational cost and insensitivity to initial conditions. In the GPM, a constrained nonlinear optimization problem has to be solved that is usually underdetermined. In this paper, we propose a new optimization approach in which we reformulate the optimization problem such that constraints are embedded implicitly in the cost function. Moreover, we propose to split the unknown parameter in two sets based on the structure of Hill functions. These two sets are estimated separately to resolve the issue of the underdetermined problem. As a case study, we apply the proposed technique on the SOS response in Escherichia coli and compare the results with the existing literature.


Author(s):  
Louay S. Yousuf ◽  
Anis Drira

In this paper, a polydyne cam with translated roller follower over a range of speeds are analyzed. There is a clearance between the follower and the guide. The dynamic simulation is investigated taking into account the impact and the friction. The simulation has been done by using Solidworks program. The effect of follower guides’ clearances on roller follower non-periodicity is considered based on Lyapunov exponent technique. Rosenstein method is used to calculate largest Lyapunov exponent for different angular velocities of the cam. The experimental setup has been implemented by using OPTOTRAK/3020 through a 3-D infrared markers to track follower motion. The power spectrum analysis of Fast Fourier Transform and phase plane contour are examined roller follower non-periodicity.


2020 ◽  
pp. 107754632094469
Author(s):  
Xijun Ye ◽  
Chudong Pan

Unknown initial conditions can affect the identified accuracy of dynamic forces. Direct measurement of initial conditions is relatively difficult. This study proposes a sparse regularization–based method for identifying forces considering influences of unknown initial conditions. The initial conditions are embedded in a classical governing equation of force identification. The key idea is to introduce a concept of concomitant mapping matrix for reasonably expressing the initial conditions. First, a dictionary is introduced for expanding the dynamic forces. Then, the concomitant mapping matrix is formulated by using free vibrating responses, which correspond to structural responses happening after the structure is subjected to each atom of the force dictionary. A sparse regularization strategy is applied for solving the ill-conditioned equation. After that, the problem of force identification is converted into an optimization problem, and it can be solved by using a one-step strategy. Numerical simulations are carried out for verifying the feasibility and effectiveness of the proposed method. Illustrated results clearly show the applicability and robustness of the proposed method for dealing with force reconstruction and moving force identification.


2020 ◽  
Vol 10 (18) ◽  
pp. 6157
Author(s):  
Jose Manuel Gimenez-Guzman ◽  
Alejandra Martínez-Moraian ◽  
Rene D. Reyes-Bardales ◽  
David Orden ◽  
Ivan Marsa-Maestre

This paper models an air traffic optimization problem where, on the one hand, flight operators seek to minimize fuel consumption flying at optimal cruise levels and, on the other hand, air traffic managers aim to keep intersecting airways at as distant as possible flight levels. We study such a problem as a factorized optimization, which is addressed through a spectrum graph coloring model, evaluating the effect that safety constraints have on fuel consumption, and comparing different heuristic approaches for allocation.


Sign in / Sign up

Export Citation Format

Share Document