scholarly journals Influence of magnetic nanoparticles on dielectric properties of Shell oil transformer oil

2021 ◽  
Vol 24 (02) ◽  
pp. 154-159
Author(s):  
O.V. Kovalchuk ◽  
◽  
O.B. Nesterenko ◽  
V.Yo. Kotovskyi ◽  
I.P. Studenyak ◽  
...  

The influence of two types of nano-impurities MF1 and MF2 on the dielectric properties of Shell oil transformer oil at the temperature 293 K has been studied. It has been shown that these magnetic impurities have no significant effect on the dielectric permittivity value of Shell oil, but more significantly increase its conductivity, in so doing, the impurity MF1 increases the conductivity of transformer oil 4 times larger than the impurity MF2. It has been ascertained that the low-frequency dielectric relaxation appearing in the studied samples can be described by the Cole–Cole equation. The parameters of this relaxation process and the influence of different types of magnetic impurities on them have been estimated.

2015 ◽  
Vol 8 (3) ◽  
pp. 2176-2188 ◽  
Author(s):  
Keisham Nanao Singh

This article reports on the Dielectric Relaxation Studies of two Liquid Crystalline compounds - 7O.4 and 7O.6 - doped with dodecanethiol capped Silver Nanoparticles. The liquid crystal molecules are aligned homeotropically using CTAB. The low frequency relaxation process occurring above 1 MHz is fitted to Cole-Cole formula using the software Dielectric Spectra fit. The effect of the Silver Nanoparticles on the molecular dipole dynamics are discussed in terms of the fitted relaxation times, Cole-Cole distribution parameter and activation energy. The study indicate a local molecular rearrangement of the liquid crystal molecules without affecting the order of the bulk liquid crystal molecules but these local molecules surrounding the Silver Nanoparticles do not contribute to the relaxation process in the studied frequency range. The observed effect on activation energy suggests a change in interaction between the nanoparticles/liquid crystal molecules.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1173
Author(s):  
Ilze Beverte ◽  
Ugis Cabulis ◽  
Sergejs Gaidukovs

As a non-metallic composite material, widely applied in industry, rigid polyurethane (PUR) foams require knowledge of their dielectric properties. In experimental determination of PUR foams’ dielectric properties protection of one-side capacitive sensor’s active area from adverse effects caused by the PUR foams’ test objects has to be ensured. In the given study, the impact of polytetrafluoroethylene (PTFE) films, thickness 0.20 mm and 0.04 mm, in covering or simulated coating the active area of one-side access capacitive sensor’ electrodes on the experimentally determined true dielectric permittivity spectra of rigid PUR foams is estimated. Penetration depth of the low frequency excitation field into PTFE and PUR foams is determined experimentally. Experiments are made in order to evaluate the difference between measurements on single PUR foams’ samples and on complex samples “PUR foams + PTFE film” with two calibration modes. A modification factor and a small modification criterion are defined and values of modifications are estimated in numerical calculations. Conclusions about possible practical applications of PTFE films in dielectric permittivity measurements of rigid PUR foams with one-side access capacitive sensor are made.


Author(s):  
S. F. Khor ◽  
Z. A. Talib ◽  
W. M. Daud ◽  
H. A. A. Sidek ◽  
W. M. M. Yunus ◽  
...  

(ZnO)30(MgO)x(P2O5)70-x glasses of the composition x = 5, 8 and 13 mol % have been prepared by melt quenching technique. The dielectric permittivity (89) and loss factor (8:) were measured in the frequency range from 0.01 Hz to 1 MHz and in the temperature range 303 to 573 K . From the results there are evidence of dipolar relaxation occurring between 103 – 106 Hz while at low frequency the spectrum is dominated by dc conduction which manifested by the 1/@ slope of loss factor plot. Value of the relaxing frequency (@p) plotted against 1/T shows one electrical transportation mechanism. The empirical data was sufficiently fitted by using Harviliak-Negami equation.


2016 ◽  
Vol 846 ◽  
pp. 311-317
Author(s):  
Mohd Noor Mat ◽  
M.K. Halimah ◽  
Wan Mohd Daud Wan Yusoff ◽  
H. Mansor ◽  
H. Nizam ◽  
...  

Dielectric relaxation and conductivity of Ni0.3Zn0.7Fe2O4 (NZF) were studied in the frequency range between 0.01 Hz to 3 MHz and temperature range within 313 K to 473 K. The sample was prepared by mixing Zinc Oxide, Nickel Oxide and Iron Oxide and sintered at 1573 K for 10 hours long. Dielectric properties were studied using Novo Control Dielectric Spectrometer. Dielectric relaxation and conductivity phenomena were discussed using an empirical model to key out the dielectric relaxation process. Analyze peak frequency relaxation process consist of four slopes to explain the dielectric relaxation process. The conductivity of the sample indicates an activated process and activation energy of dc conductivity is 0.44 ± 0.01 eV.


1977 ◽  
Vol 32 (5) ◽  
pp. 515-516
Author(s):  
B. Hinopoulos ◽  
P. U. Sakellaridis

Abstract The dielectric behaviour of solid 1,4-Butandiol has been studied. A region of low frequency dispersion has been ob­ served. In a crystalline sample treated to have more lattice faults, the losses were increased. The effect is attributed to a dielectric relaxation process existing in connection with the lattice defects.


Author(s):  
H. Shivashankar ◽  
Kevin Amith Mathias ◽  
Pavankumar R. Sondar ◽  
M. H. Shrishail ◽  
S. M. Kulkarni

AbstractRecently, polymer-based dielectric materials have become one of the key materials to play an essential role in clean energy production, energy transformation, and energy storage applications. The end usage is the energy storage capability because it is a trade-off between dielectric permittivity, dielectric loss, and dissipation factor. Hence, it is of prime importance to study the dielectric properties of polymer materials by adding filler material at a low-frequency range. In the present study, polydimethylsiloxane/carbon black nanocomposites are prepared using the solution cast method. The dielectric properties, such as dielectric constant, dielectric loss, and dissipation factors due to the concentration of filler particles and low-frequency effect on the nanocomposites, are examined. Also, different empirical models are used to estimate the dielectric permittivity of polymer nanocomposites. The low-frequency range of 100 Hz to 1 MHz and the effect of varying volume fractions of carbon black show a significant change in the dielectric properties. It is found that the nanocomposites have a higher dielectric permittivity than the base polymer material. It is also observed that an increase in filler concentration increases the dielectric permittivity, which is confirmed with an empirical model.


2021 ◽  
Vol 96 ◽  
pp. 107093
Author(s):  
Vera P. Pavlović ◽  
Dragana Tošić ◽  
Radovan Dojčilović ◽  
Duško Dudić ◽  
Miroslav D. Dramićanin ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4017
Author(s):  
Dorota Szwagierczak ◽  
Beata Synkiewicz-Musialska ◽  
Jan Kulawik ◽  
Norbert Pałka

New ceramic materials based on two copper borates, CuB2O4 and Cu3B2O6, were prepared via solid state synthesis and sintering, and characterized as promising candidates for low dielectric permittivity substrates for very high frequency circuits. The sintering behavior, composition, microstructure, and dielectric properties of the ceramics were investigated using a heating microscope, X-ray diffractometry, scanning electron microscopy, energy dispersive spectroscopy, and terahertz time domain spectroscopy. The studies revealed a low dielectric permittivity of 5.1–6.7 and low dielectric loss in the frequency range 0.14–0.7 THz. The copper borate-based materials, owing to a low sintering temperature of 900–960 °C, are suitable for LTCC (low temperature cofired ceramics) applications.


Sign in / Sign up

Export Citation Format

Share Document