scholarly journals Thermodynamic Calculation of Fe–N and Fe–Ga Melting Diagrams at Pressures from 0.1 MPa to 7 GPa

2021 ◽  
Vol 22 (4) ◽  
pp. 531-538
Author(s):  
V. Z. Turkevych ◽  
Yu. Yu. Rumiantseva ◽  
I. О. Hnatenko ◽  
I. O. Hladkyi ◽  
Yu. I. Sadova

This paper presents results of melting-diagrams’ calculations for the Fe–N and Fe–Ga systems at atmospheric pressure (0.1 MPa) and at high pressures (3, 5, and 7 GPa). Thermodynamic calculations are performed within the models of phenomenological thermodynamics. As shown, the increase of pressure results in destabilization of high-temperature b.c.c.-Fe modification in Fe–N system and stabilization of Fe4N equilibrium with the liquid phase. In Fe–Ga system, the intermetallic compounds Fe3Ga, Fe6Ga5, Fe3Ga4, and FeGa3 retain their stability up to pressure of 7 GPa. The stabilization of Fe4N equilibrium with the liquid phase at high pressures indicates that the Fe4N can be a competing phase in the gallium-nitride crystallization from the Fe–Ga–N system melt.

Author(s):  
Gennadiy Valentinovich Alexeev ◽  
Elena Igorevna Verboloz

The article focuses on the process of intensive mixing of liquid phase in the tin during high-temperature sterilization, i.e. sterilization when temperature of the heat carrier reaches 150-160°C. It has been stated that for intensification of the thermal process during sterilization of tinned fish with liquid filling it is preferable to turn a tin from bottom to top. This operation helps to increase the driving power of the process and to shorten warming time. Besides, high-temperature sterilization carried out according to experimental modes, where the number of tin turnovers is calculated, greatly shortens processing time and improves quality of the product. In this case there is no superheating, all tins are evenly heated. The study results will contribute to equipment modernization and to preserving valuable food qualities.


Alloy Digest ◽  
2000 ◽  
Vol 49 (5) ◽  

Abstract DMV 25.7 N is a superferritic-austenitic grade with high mechanical properties and superior corrosion resistance to chlorides, freshwater, and high pressures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-785. Producer or source: DMV Stainless USA Inc.


2000 ◽  
Vol 282 (1-2) ◽  
pp. 109-114 ◽  
Author(s):  
Robert P. Jensen ◽  
William E. Luecke ◽  
Nitin P. Padture ◽  
Sheldon M. Wiederhorn

2019 ◽  
Vol 126 (23) ◽  
pp. 235901 ◽  
Author(s):  
Bin Li ◽  
Zilong Miao ◽  
Lei Ti ◽  
Shengli Liu ◽  
Jie Chen ◽  
...  

Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Lili Liu ◽  
Xiaozhi Wu ◽  
Weiguo Li ◽  
Rui Wang ◽  
Qing Liu

AbstractThe high temperature and pressure effects on the elastic properties of the AgRE (RE=Sc, Tm, Er, Dy, Tb) intermetallic compounds with B2 structure have been performed from first principle calculations. For the temperature range 0-1000 K, the second order elastic constants for all the AgRE intermetallic compounds follow a normal behavior: they decrease with increasing temperature. The pressure dependence of the second order elastic constants has been investigated on the basis of the third order elastic constants. Temperature and pressure dependent elastic anisotropic parameters A have been calculated based on the temperature and pressure dependent elastic constants.


Sign in / Sign up

Export Citation Format

Share Document