scholarly journals Measurement of Percentage of Body Fat in 411 Children and Adolescents: A Comparison of Dual-Energy X-Ray Absorptiometry With a Four-Compartment Model

PEDIATRICS ◽  
2004 ◽  
Vol 113 (5) ◽  
pp. 1285-1290 ◽  
Author(s):  
A. B. Sopher ◽  
J. C. Thornton ◽  
J. Wang ◽  
R. N. Pierson ◽  
S. B. Heymsfield ◽  
...  
Author(s):  
Manman Chen ◽  
Jieyu Liu ◽  
Ying Ma ◽  
Yanhui Li ◽  
Di Gao ◽  
...  

To investigate the associations between body fat percentage (BF%) with childhood blood pressure (BP) levels and elevated BP (EBP) risks, and further examine the validity of bioelectrical impedance analysis (BIA), we conducted a cross-sectional study of 1426 children and adolescents aged 7–17 years in Beijing, 2020. EBP, including elevated systolic BP (ESBP) and elevated diastolic BP (EDBP), was defined based on the age- and sex-specific 90th BP reference values of children and adolescents in China. BF% was measured by dual-energy X-ray absorptiometry (DEXA) and BIA devices, and was divided into four quartiles. Log-binomial models were applied to calculate odds ratios (ORs) and 95% confidence intervals (95%CI). Girls tended to have higher BF% levels than boys (p < 0.05). There was 41.0% of girls who developed EBP. High BF% was associated with increased BP levels with ORs of 0.364 (95%CI = 0.283–0.444) for SBP, 0.112 (95%CI = 0.059–0.165) for DBP, and 1.043 (95%CI = 1.027–1.059) for EBP, while the effects were more pronounced in girls and older-aged children. BIA devices agreed well with BF% assessment obtained by DEXA. High BF% might have negative effects on childhood BP. Convenient measurements of body fat might help to assess childhood obesity and potential risks of hypertension.


2021 ◽  
pp. 30-34
Author(s):  
O. A. Nikitinskaya ◽  
N. V. Toroptsova

Obesity is a risk factor for many chronic diseases. Several research methods are used to determine the amount of body fat, including the «gold standard» dual-energy X-ray absorptiometry (DXA). The bioelectrical impedance analysis (BIA) method is an alternative for assessing body composition that does not require special conditions for placement and examination, but the accuracy of its results depends on the hydration of the body.Objective. To compare the results of determining the percentage of body fat using multi-frequency (MF) BIA and DXA.Material and methods. The study included 20 volunteers (11 women and 9 men) aged 26 to 70 years without serious metabolic, cardiovascular or endocrine diseases. Two repeated measurements were performed using the MF-BIA method on the MS FIT device and the DXA method on the Lunar Prodigy Advance device.Results. There were no significant differences in the average percentage of body fat in repeated measurements by MF-BIA and DXA methods, and the intra-group correlation coefficients (r2 ) were 0.999 and 0.997, respectively. A high and significant correlation in percentage of body fat was found between the MF-BIA and DXA (r = 0.973, p < 0.001). The average difference between the results of these two methods was 0.1243%. Differences in percentage of body fat that exceeded two or more standard deviations were detected less than in 5% cases, so the data on body fat content estimated using DXA and BIA are consistent and can be considered almost equal.Conclusion. Our study has shown that the MS FIT body composition device using the MF-BIA method can be an alternative to DXA for assessing the percentage of body fat without introducing additional formulas to recalculate the data obtained.


2003 ◽  
Vol 94 (2) ◽  
pp. 499-506 ◽  
Author(s):  
Grant E. van der Ploeg ◽  
Robert T. Withers ◽  
Joe Laforgia

This study compared body composition by dual-energy X-ray absorptiometry (DEXA; Lunar DPX-L) with that via a four-compartment (4C; water, bone mineral mass, fat, and residual) model. Relative body fat was determined for 152 healthy adults [30.0 ± 11.1 (SD) yr; 75.10 ± 14.88 kg; 176.3 ± 8.7 cm] aged from 18 to 59 yr. The 4C approach [20.7% body fat (%BF)] resulted in a significantly ( P < 0.001) higher mean %BF compared with DEXA (18.9% BF), with intraindividual variations ranging from −2.6 to 7.3% BF. Linear regression and a Bland and Altman plot demonstrated the tendency for DEXA to progressively underestimate the %BF of leaner individuals compared with the criterion 4C model (4C %BF = 0.862 × DEXA %BF + 4.417; r 2 = 0.952, standard error of estimate = 1.6% BF). This bias was not attributable to variations in fat-free mass hydration but may have been due to beam-hardening errors that resulted from differences in anterior-posterior tissue thickness.


Sign in / Sign up

Export Citation Format

Share Document