MEASURES OF BODY FAT AND HYDRATION IN ADOLESCENT BOYS

PEDIATRICS ◽  
1963 ◽  
Vol 31 (2) ◽  
pp. 226-239
Author(s):  
Felix P. Heald ◽  
Edward E. Hunt ◽  
Robert Schwartz ◽  
Charles D. Cook ◽  
Orville Elliot ◽  
...  

A study of total body fat by simultaneously performing a variety of measurements of adiposity on each of 66 adolescent boys is described. Estimates of total body fat by densitometry indicate a 50% loss of body fat's contribution to total body weight from 12 to 18 years. Total body water, as measured by deuterium oxide, increases from 61% at age 12 years to 65% at age 18 years. Fat loss from this measurement closely parallels the fat changes estimated from densitometry. Lean body mass, hydration and adiposity appear to reach adult values at the sixteenth year. Subcutaneous fat measured by soft tissue x-rays films of the arm shows a similar fat loss, and of the same magnitude, when compared to densitometry and total body water estimates of fat. The triceps skinfold has a high correlation in estimating losses in fat during adolescence. The skinfold technique at this site provided a practical and accurate estimate of adiposity in adolescent boys.

1978 ◽  
Vol 54 (5) ◽  
pp. 477-479
Author(s):  
S. Kojo Addae ◽  
S. Dakubu ◽  
E. T. Larmie ◽  
R. Boatin ◽  
E. H. Belcher

1. Standard radioisotope dilution techniques employing [3H]water and [22Na]sodium chloride have been used to determine the total body water and total exchangeable sodium of 20 male and 10 female normal Ghanaians (Africans) aged 19–25 years. 2. Lean body mass and total body fat are calculated as a percentage of body weight; the total exchangeable sodium values have been expressed in relation to lean body mass. 3. Comparison of the data for Ghanaian subjects with published figures for Caucasian subjects of similar age shows that the Ghanaian men have much less total body fat and the women a little less total body fat than their Caucasian counterparts. 4. Total exchangeable sodium expressed in terms of lean body mass shows close agreement in both men and women.


1980 ◽  
Vol 95 (3) ◽  
pp. 515-522 ◽  
Author(s):  
R. T. Cowan ◽  
J. J. Robinson ◽  
I. McHattie ◽  
C. Fraser

SUMMARYThe efficacy of estimates of gut contents and total body water in increasing the precision with which the chemical composition of the body could be estimated in early lactation was evaluated in 36 Finnish Landrace × Dorset Horn ewes. The ewes were fed at two levels in pregnancy, and, in lactation, given diets of two metabolizable energy concentrations.The allometric relationships relating weight of chemical fat and protein to emptybody weight were not affected by treatment or stage of lactation. Inclusion of an index of gut contents, based on dry-matter intake, indigestibility and retention time of food residues, together with live weight in a regression equation predicting weight of body fat, only slightly increased the precision of estimate compared with equations using live weight alone.There was a close negative relationship between the proportions of water and fat in live weight. Inclusion of weight of body water with live weight in a regression equation predicting weight of body fat markedly increased the precision of estimate and the residual error (0·81 kg) was similar at different stages of lactation. However, when deuterium oxide space was used instead of body water there was only a small increase in precision of estimate and the residual error varied from 5·3 kg in early lactation to 2·1 kg in mid-lactation. The relationship between deuterium oxide space and body water was shown to be variable and altered by stage of lactation, and these differences were associated with differences in rate of water turnover in the animal's body.It is concluded that estimates of body water are unsuitable for estimating weight of body fat in early lactation.


1979 ◽  
Vol 29 (1) ◽  
pp. 81-90 ◽  
Author(s):  
R. T. Cowan ◽  
J. J. Robinson ◽  
J. F. D. Greenhalgh ◽  
I. McHattie

ABSTRACTChanges in body composition during lactation were measured in 12 Border Leicester × Scottish Blackface ewes by serial slaughter at 12, 41 and 111 days of lactation. Ewes suckled twin lambs and were given daily 1·6 kg dry matter of a complete diet containing 151 g crude protein and 10·2 MJ metabolizable energy/kg dry matter.Live weights of ewes averaged 60·2, 58·9 and 55·8 kg at 12, 41 and 111 days of lactation respectively. There were no significant changes in weights of stomach, small and large intestine and liver.The weight of body fat averaged 9·19, 2·28 and 1·19 kg at 12, 41 and 111 days respectively (P < 0·001) and weight of ash increased from 1·72 kg at 12 days to 2·30 kg at 111 days (P < 0·001). Water to protein ratios at the three stages of lactation were 2·94, 3·36 and 3·18 (P < 0·10). The energy value of weight loss varied from 68 to 17 MJ/kg, depending on the relative changes in total body water and fat. Live-weight change was therefore a poor indicator of change in body energy during early lactation.Body fat could be predicted from its combined relationships with live weight and total body water (residual s.d. ±0·70 kg), but when deuterium oxide space was used to estimate body water separate equations were necessary for early and later stages of lactation. This was apparently due to differences between stages of lactation in the time required for deuterium oxide to equilibrate with water in the reticulo-rumen.


1982 ◽  
Vol 34 (3) ◽  
pp. 347-350 ◽  
Author(s):  
J. Robelin

ABSTRACTTwo methods of estimating body fat in vivo in cattle, namely measurement of body water by dilution of deuterium oxide and subcutaneous adipose-cell size, were studied in mature cows and compared with a classical method based on dissection of a sample joint.Total body fat, measured after complete dissection of 12 dry cows, varied between 64 and 185g/kg body weight. Rib fat and adipose-cell diameter were related positively, while body water was related negatively to total body fat. The equations for prediction of total body fat were sufficiently accurate (s.d. = 10·1 to 11·5 g total body fat per kg body weight) to warrant further examination, and adipose-cell diameter was as accurate as body water.


1997 ◽  
Vol 24 (6) ◽  
pp. 649 ◽  
Author(s):  
Andrew P. Woolnough ◽  
William J. Foley ◽  
Christopher N. Johnson ◽  
Murray Evans

Several indirect methods for measuring body composition in a large herbivore, the southern hairy-nosed wombat (Lasiorhinus latifrons), were evaluated. Body composition was determined by whole-body chemical analysis of 15 wild-caught wombats, and compared with several indices of body fat: total body water measured by isotope dilution, bioelectrical impedance analysis (BIA), body-mass index, and a body- condition score. Total body water and total body fat (by soxhlet analysis) were highly correlated (r2 = 0.97, intercept s.e. = 1.00). Total body water measured by desiccation was highly correlated with isotope dilution space (r2 = 0.97, intercept s.e. = 0.43 for deuterium; r2 = 0.95, intercept s.e. = 0.44 for H218O). Percentage body fat by soxhlet analysis was highly correlated with total body water measured as deuterium dilution space (r2 = 0.83, intercept s.e. = 2.46). Multiple linear regression models using BIA plethysmograph measurements (resistance and impedance) and total body mass, were successful in predicting body fat (r2 = 0.90, s.e. = 1.99) and total body water (r2 = 0.90, s.e. = 1.64). Isotope-dilution techniques are the most accurate means of indirectly measuring total body water and total body fat, but at considerable expense of time and money. BIA offers reduced accuracy but at less cost and may be useful for measuring changes in body composition in populations of herbivores. Body-condition indices and scores correlate poorly with body fat, suggesting that their application as a means to predict body fat is limited.


1963 ◽  
Vol 14 (4) ◽  
pp. 594 ◽  
Author(s):  
BA Panaretto

Total body water estimates made in eight rabbits by the antipyrine dilution technique ranged from 52.6 to 69.7% of fasted liveweight. These estimates agreed closely with subsequent measurements of total body water, made by dessicating samples of the minced bodies, which ranged from 50.6 to 68.7% of the fasted liveweight. The relationship between total body water and total body fat was determined in 47 fasted rabbits in which these body components ranged from 47.2 to 71.8 and 3.6 to 34.6 % of liveweight respectively. This relationship was y = 95.5 - 1 .30x, where x and y are the percentages of water and fat respectively in the live animal. The mean water content of the lean body mass was 72.6 � 1.1 % for the 47 rabbits in these experiments.


Author(s):  
Brett S. Nickerson ◽  
Samantha V. Narvaez ◽  
Mitzy I. Juarez ◽  
Stefan A. Czerwinski

1999 ◽  
Vol 45 (7) ◽  
pp. 1077-1081 ◽  
Author(s):  
Graham Jennings ◽  
Leslie Bluck ◽  
Antony Wright ◽  
Marinos Elia

Abstract Background: The conventional method of measuring total body water by the deuterium isotope dilution method uses gas isotope ratio mass spectrometry (IRMS), which is both expensive and time-consuming. We investigated an alternative method, using Fourier transform infrared spectrophotometry (FTIR), which uses less expensive instrumentation and requires little sample preparation. Method: Total body water measurements in human subjects were made by obtaining plasma, saliva, and urine samples before and after oral dosing with 1.5 mol of deuterium oxide. The enrichments of the body fluids were determined from the FTIR spectra in the range 1800–2800 cm−1, using a novel algorithm for estimation of instrumental response, and by IRMS for comparison. Results: The CV (n = 5) for repeat determinations of deuterium oxide in biological fluids and calibrator solutions (400–1000 μmol/mol) was found to be in the range 0.1–0.9%. The use of the novel algorithm instead of the integration routines supplied with the instrument gave at least a threefold increase in precision, and there was no significant difference between the results obtained with FTIR and those obtained with IRMS. Conclusion: This improved infrared method for measuring deuterium enrichment in plasma and saliva requires no sample preparation, is rapid, and has potential value to the clinician.


Sign in / Sign up

Export Citation Format

Share Document