scholarly journals Sodium–Glucose Cotransporter-2 Inhibitors and Heart Failure Prevention in Type 2 Diabetes

2019 ◽  
Vol 5 (3) ◽  
pp. 169-172 ◽  
Author(s):  
Muhammad Shahzeb Khan ◽  
Javed Butler

Diabetes and heart failure (HF) are closely linked, with one causing a worse prognosis in the other. The majority of anti-hyperglycaemic agents primarily reduce risk of ischaemic microvascular events without targeting the mechanisms involved for diabetes cardiomyopathy and HF. Sodium–glucose cotransporter-2 (SGLT2) inhibitors have emerged as a novel class of glucose-lowering agents that have consistently reduced HF hospitalisations, unlike other agents. The authors discuss the current evidence and highlight possible future directions for the role of SGLT2 inhibitors in HF prevention.

2021 ◽  
Vol 10 (19) ◽  
pp. 4497
Author(s):  
Ana María Gómez-Perez ◽  
Miguel Damas-Fuentes ◽  
Isabel Cornejo-Pareja ◽  
Francisco J. Tinahones

Heart failure (HF) has been a hot topic in diabetology in the last few years, mainly due to the central role of sodium-glucose cotransporter 2 inhibitors (iSGLT2) in the prevention and treatment of cardiovascular disease and heart failure. It is well known that HF is a common complication in diabetes. However, most of the knowledge about it and the evidence of cardiovascular safety trials with antidiabetic drugs refer to type 2 diabetes (T2D). The epidemiology, etiology, and pathophysiology of HF in type 1 diabetes (T1D) is still not well studied, though there are emerging data about it since life expectancy for T1D has increased in the last decades and there are more elderly patients with T1D. The association of T1D and HF confers a worse prognosis than in T2D, thus it is important to investigate the characteristics, risk factors, and pathophysiology of this disease in order to effectively design prevention strategies and therapeutic tools.


2019 ◽  
Vol 19 (20) ◽  
pp. 1818-1849 ◽  
Author(s):  
Ban Liu ◽  
Yuliang Wang ◽  
Yangyang Zhang ◽  
Biao Yan

: Type 2 diabetes mellitus is one of the most common forms of the disease worldwide. Hyperglycemia and insulin resistance play key roles in type 2 diabetes mellitus. Renal glucose reabsorption is an essential feature in glycaemic control. Kidneys filter 160 g of glucose daily in healthy subjects under euglycaemic conditions. The expanding epidemic of diabetes leads to a prevalence of diabetes-related cardiovascular disorders, in particular, heart failure and renal dysfunction. Cellular glucose uptake is a fundamental process for homeostasis, growth, and metabolism. In humans, three families of glucose transporters have been identified, including the glucose facilitators GLUTs, the sodium-glucose cotransporter SGLTs, and the recently identified SWEETs. Structures of the major isoforms of all three families were studied. Sodium-glucose cotransporter (SGLT2) provides most of the capacity for renal glucose reabsorption in the early proximal tubule. A number of cardiovascular outcome trials in patients with type 2 diabetes have been studied with SGLT2 inhibitors reducing cardiovascular morbidity and mortality. : The current review article summarises these aspects and discusses possible mechanisms with SGLT2 inhibitors in protecting heart failure and renal dysfunction in diabetic patients. Through glucosuria, SGLT2 inhibitors reduce body weight and body fat, and shift substrate utilisation from carbohydrates to lipids and, possibly, ketone bodies. These pleiotropic effects of SGLT2 inhibitors are likely to have contributed to the results of the EMPA-REG OUTCOME trial in which the SGLT2 inhibitor, empagliflozin, slowed down the progression of chronic kidney disease and reduced major adverse cardiovascular events in high-risk individuals with type 2 diabetes. This review discusses the role of SGLT2 in the physiology and pathophysiology of renal glucose reabsorption and outlines the unexpected logic of inhibiting SGLT2 in the diabetic kidney.


2021 ◽  
Vol 22 (18) ◽  
pp. 9852
Author(s):  
Alex Ali Sayour ◽  
Mihály Ruppert ◽  
Attila Oláh ◽  
Kálmán Benke ◽  
Bálint András Barta ◽  
...  

Selective sodium–glucose cotransporter 2 (SGLT2) inhibitors reduced the risk of hospitalization for heart failure in patients with or without type 2 diabetes (T2DM) in large-scale clinical trials. The exact mechanism of action is currently unclear. The dual SGLT1/2 inhibitor sotagliflozin not only reduced hospitalization for HF in patients with T2DM, but also lowered the risk of myocardial infarction and stroke, suggesting a possible additional benefit related to SGLT1 inhibition. In fact, several preclinical studies suggest that SGLT1 plays an important role in cardiac pathophysiological processes. In this review, our aim is to establish the clinical significance of myocardial SGLT1 inhibition through reviewing basic research studies in the context of SGLT2 inhibitor trials.


Author(s):  
A. S. Kolbin ◽  
A. A. Kurylev ◽  
Yu. E. Balykina ◽  
M. A. Proskurin

Ipragliflozin is a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor that reduce plasma glucose concentrations by inhibiting glucose reabsorption by the kidney through inhibiting SGLT2 sodium-glucose cotransporter and induce glycosuria. SGLT2 inhibitors are a new class of glucose lowering drugs most recently approved for treatment of type 2 diabetes mellitus (T2DM). Unlike other antidiabetic agents, SGLT2 inhibitors improve glycemic control (by HbA1c) and provide multiple additional benefits, including decreased body weight, blood pressure, and other multiple pleiotropic effects. The completed clinical trials and real world data have provided evidence that including of SGLT2 inhibitors in the treatment of T2DM has benefits of reduction of cardiovascular and renal outcomes. Goal. The aim of the study was to conduct a clinical and economic examination of ipragliflozin in comparison with other regimens of glucose-lowering therapy with other SGLT2 inhibitors. Methods. In carrying out the pharmacoeconomic analysis itself, a cost-effectiveness analysis (CEA) was applied with the calculation of the corresponding cost-effectiveness ratio (CER), incremental cost-effectiveness ratio (ICER) according to the formula, as well as an a «budget impact analysis». Multiple one-way sensitivity analysis, check the robustness of the results of the main scenario results to changes in key parameters such as the cost of drugs and complications of diabetes. The time horizon for analyzing the dynamics of economic consequences when using ipragliflozin as a glucose-lowering therapy for T2DM was 5 years. Results. The weighted average cost per patient per year when using the ipragliflozin treatment strategy is 31,182 rubles. The costs of the empagliflozin strategy are 61,291 rubles per patient. In the case of using dapagliflozin, the weighted average costs are 30,032 rubles per patient per year, the total direct medical costs for the current drug therapy option, calculated on the initial number of target practice in 72,143 patients with type 2 diabetes, amounted to 3,068,642,442 rubles. Analysis of the trend of changes in weighted average costs showed that the broader use of ipragliflozin for the treatment of T2DM in the target population leads to reducing in diabetes related direct medical costs by 6.7 %, while the total economic effect of ipragliflozin introduction over five years will be 501,539,327 rubles. Conclusions. Use of ipragliflozin + metformin in T2DM treatment is a cost-effective strategy compared to empagliflozin + metformin. The combination of ipragliflozin with metformin versus dapagliflozin + metformin is economically feasible in terms of cost-effectiveness.


2020 ◽  
Vol 2 (S1) ◽  
pp. 14
Author(s):  
Kuşkonmaz SM

Sodium glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i) are a group of glycosuric drugs approved in the management of type 2 diabetes mellitus. They act on the sodium glucose cotransporter and inhibit renal glucose reabsorption. Canagliflozin dapagliflozin and empagliflozin are members of the SGLT2i group. SGLT2 is supposed to be unique to the kidney. Recent studies showed the benefits of these agents beyond and independent from glucose lowering. New guidelines emphasize these pleiotropic effects such as cardioprotective and renoprotective effects of SGLT2i and suggest them as first line oral antidiabetics in patients with coronary heart disease.


2020 ◽  
Vol 26 ◽  
Author(s):  
Dimos Karangelis ◽  
C. David Mazer ◽  
Dimitrios Stakos ◽  
Aphrodite Tzifa ◽  
Spiros Loggos ◽  
...  

Background: Type 2 diabetes mellitus (DM) is associated with a considerable risk of cardiovascular and renal disease, including heart failure. Sodium–glucose cotransporter 2 (SGLT2) inhibitors have demonstrated unprecedented cardiorenal protective effects in large scale clinical trials of patients with or without diabetes and either established cardiovascular disease (CV) or multiple CV risk factors. Objective: Herein we aim to focus on the role of SGLT2 inhibitors regarding the improvement in heart failure outcomes and the proposed mechanisms of action by which these drugs confer their beneficial effect. Methods: PubMed, Embase and Google Scholar databases were searched to identify eligible articles which are comprehensively summarized and discussed. Results: The most commonly discussed mechanisms of action are diuresis and natriuresis, reduction in preload, afterload, and ventricular mass, as well as stimulation of erythropoietin production and improved myocardial energetics. SGLT2 inhibitors improve outcomes in patients with established heart failure (HF) and reduce the risk of death and HF admissions in patients with established chronic HF with reduced ejection fraction (HFrEF), either with or without diabetes. Conclusion: Potential key mechanisms that may explain the notable cardioprotective benefits of SGLT2 inhibitors have been outlined. These agents have recently received class Ia recommendation in specific groups of people with DM to lower the risk of hospitalization for HF and risk of death, while these benefits may also extend to people without diabetes. It remains to be seen whether they will also emerge as treatment approaches in the acute phase of CV episodes.


2019 ◽  
Vol 13 (4) ◽  
pp. 205-224
Author(s):  
Elisa Fabbri ◽  
Maurizio Nizzoli

Heart failure (HF) and type 2 diabetes (T2D) often coexist and having both the diseases compared to having one alone is associated with greater challenges in their management/treatment and worse outcomes. The present review of the literature is aimed at providing a comprehensive synopsis of the main evidences about the treatment of the two coexisting conditions. In particular, the recent introduction of new glucose-lowering drugs has been deeply changing the therapeutic approach to T2D. Big randomized controlled trails (RCTs) developed to test the cardiovascular safety of these new drugs consistently highlighted a reduction of the risk of hospitalization for HF in patients with T2D treated with sodium-glucose co-transporter 2 (SGLT2) inhibitors, suggesting a potential and revolutionary class effect probably related to their diuretic effect. Moreover, a renal protective effect of this drug class has also been emerging and the beneficial effect of SGLT2 inhibitors on the risk of HF hospitalization seems to be even greater in patients with worse renal function. In conclusion, although the underlying mechanisms are not fully understood, SGLT2 inhibitors appear to be a promising tool to treat HF and T2D. Ongoing RCTs specifically enrolling patients with HF treated with SGLT2 inhibitors will provide more insights and further information.


2020 ◽  
Vol 55 (2) ◽  
pp. 252-260
Author(s):  
Judy W. M. Cheng ◽  
Vincent Colucci ◽  
James S. Kalus ◽  
Sarah A. Spinler

Sodium-glucose cotransporter (SGLT2) inhibitors have demonstrated cardiovascular (CV) benefits in large-scale clinical trials of people who have type 2 diabetes and either established CV disease or multiple CV risk factors. These studies also indicated early signals in benefiting heart failure (HF) patients and those with chronic kidney diseases. This article reviews recent and future clinical studies that focus on evaluation of the use of SGLT2 inhibitors in HF management and renal protection.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Atsushi Tanaka ◽  
Shigeru Toyoda ◽  
Takumi Imai ◽  
Kazuki Shiina ◽  
Hirofumi Tomiyama ◽  
...  

Abstract Background Sodium–glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of a deterioration in heart failure (HF) and mortality in patients with a broad range of cardiovascular risks. Recent guidelines recommend considering the use of SGLT2 inhibitors in patients with type 2 diabetes (T2D) and HF, irrespective of their glycemic control status and background use of other glucose-lowering agents including metformin. However, only a small number of studies have investigated whether the effects of SGLT2 inhibitor in these patients differ by the concomitant use of other glucose-lowering agents. Methods This was a post-hoc analysis of the CANDLE trial (UMIN000017669), an investigator-initiated, multicenter, open-label, randomized, controlled trial. The primary aim of the analysis was to assess the effect of 24 weeks of treatment with canagliflozin, relative to glimepiride, on N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration in patients with T2D and clinically stable chronic HF. In the present analysis, the effect of canagliflozin on NT-proBNP concentration was assessed in the patients according to their baseline use of other glucose-lowering agents. Results Almost all patients in the CANDLE trial presented as clinically stable (New York Heart Association class I to II), with about 70% of participants having HF with a preserved ejection fraction phenotype (defined as a left ventricular ejection fraction ≥ 50%) at baseline. Of the 233 patients randomized to either canagliflozin (100 mg daily) or glimepiride (starting dose 0.5 mg daily), 85 (36.5%) had not been taking any glucose-lowering agents at baseline (naïve). Of the 148 patients who had been taking at least one glucose-lowering agent at baseline (non-naïve), 44 (29.7%) and 127 (85.8%) had received metformin or a dipeptidyl dipeptidase-4 (DPP-4) inhibitor, respectively. The group ratio (canagliflozin vs. glimepiride) of proportional changes in the geometric means of NT-proBNP concentration was 0.95 (95% confidence interval [CI] 0.76 to 1.18, p = 0.618) for the naïve subgroup, 0.92 (95% CI 0.79 to1.07, p = 0.288) for the non-naïve subgroup, 0.90 (95% CI 0.68 to 1.20, p = 0.473) for the metformin-user subgroup, and 0.91 (95% CI 0.77 to 1.08, p = 0.271) for the DPP-4 inhibitor-user subgroup. No heterogeneity in the effect of canagliflozin, relative to glimepiride, on NT-proBNP concentration was observed in the non-naïve subgroups compared to that in the naïve subgroup. Conclusion The impact of canagliflozin treatment on NT-proBNP concentration appears to be independent of the background use of diabetes therapy in the patient population examined. Trial registration University Medical Information Network Clinical Trial Registry, number 000017669. Registered on May 25, 2015


Sign in / Sign up

Export Citation Format

Share Document