scholarly journals Bone remodeling stages under physiological conditions and glucocorticoid in excess: Focus on cellular and molecular mechanisms

2021 ◽  
Vol 12 (2) ◽  
pp. 212-227
Author(s):  
V. V. Povoroznyuk ◽  
N. V. Dedukh ◽  
M. A. Bystrytska ◽  
V. S. Shapovalov

This review provides a rationale for the cellular and molecular mechanisms of bone remodeling stages under physiological conditions and glucocorticoids (GCs) in excess. Remodeling is a synchronous process involving bone resorption and formation, proceeding through stages of: (1) resting bone, (2) activation, (3) bone resorption, (4) reversal, (5) formation, (6) termination. Bone remodeling is strictly controlled by local and systemic regulatory signaling molecules. This review presents current data on the interaction of osteoclasts, osteoblasts and osteocytes in bone remodeling and defines the role of osteoprogenitor cells located above the resorption area in the form of canopies and populating resorption cavities. The signaling pathways of proliferation, differentiation, viability, and cell death during remodeling are presented. The study of signaling pathways is critical to understanding bone remodeling under normal and pathological conditions. The main signaling pathways that control bone resorption and formation are RANK / RANKL / OPG; M-CSF – c-FMS; canonical and non-canonical signaling pathways Wnt; Notch; MARK; TGFβ / SMAD; ephrinB1/ephrinB2 – EphB4, TNFα – TNFβ, and Bim – Bax/Bak. Cytokines, growth factors, prostaglandins, parathyroid hormone, vitamin D, calcitonin, and estrogens also act as regulators of bone remodeling. The role of non-encoding microRNAs and long RNAs in the process of bone cell differentiation has been established. MicroRNAs affect many target genes, have both a repressive effect on bone formation and activate osteoblast differentiation in different ways. Excess of glucocorticoids negatively affects all stages of bone remodeling, disrupts molecular signaling, induces apoptosis of osteocytes and osteoblasts in different ways, and increases the life cycle of osteoclasts. Glucocorticoids disrupt the reversal stage, which is critical for the subsequent stages of remodeling. Negative effects of GCs on signaling molecules of the canonical Wingless (WNT)/β-catenin pathway and other signaling pathways impair osteoblastogenesis. Under the influence of excess glucocorticoids biosynthesis of biologically active growth factors is reduced, which leads to a decrease in the expression by osteoblasts of molecules that form the osteoid. Glucocorticoids stimulate the expression of mineralization inhibitor proteins, osteoid mineralization is delayed, which is accompanied by increased local matrix demineralization. Although many signaling pathways involved in bone resorption and formation have been discovered and described, the temporal and spatial mechanisms of their sequential turn-on and turn-off in cell proliferation and differentiation require additional research.

2018 ◽  
Vol 16 (2) ◽  
pp. 194-199
Author(s):  
Wioletta Ratajczak-Wrona ◽  
Ewa Jablonska

Background: Polymorphonuclear neutrophils (PMNs) play a crucial role in the innate immune system’s response to microbial pathogens through the release of reactive nitrogen species, including Nitric Oxide (NO). </P><P> Methods: In neutrophils, NO is produced by the inducible Nitric Oxide Synthase (iNOS), which is regulated by various signaling pathways and transcription factors. N-nitrosodimethylamine (NDMA), a potential human carcinogen, affects immune cells. NDMA plays a major part in the growing incidence of cancers. Thanks to the increasing knowledge on the toxicological role of NDMA, the environmental factors that condition the exposure to this compound, especially its precursors- nitrates arouse wide concern. Results: In this article, we present a detailed summary of the molecular mechanisms of NDMA’s effect on the iNOS-dependent NO production in human neutrophils. Conclusion: This research contributes to a more complete understanding of the mechanisms that explain the changes that occur during nonspecific cellular responses to NDMA toxicity.


2019 ◽  
Vol 14 (3) ◽  
pp. 219-225 ◽  
Author(s):  
Cong Tang ◽  
Guodong Zhu

The nuclear factor kappa B (NF-κB) consists of a family of transcription factors involved in the regulation of a wide variety of biological responses. Growing evidence support that NF-κB plays a major role in oncogenesis as well as its well-known function in the regulation of immune responses and inflammation. Therefore, we made a review of the diverse molecular mechanisms by which the NF-κB pathway is constitutively activated in different types of human cancers and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. We also discussed various pharmacological approaches employed to target the deregulated NF-κB signaling pathway and their possible therapeutic potential in cancer therapy. Moreover, Syk (Spleen tyrosine kinase), non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immune-receptors like the B-cell receptor (BCR), which can also activate the inflammasome and NF-κB-mediated transcription of chemokines and cytokines in the presence of pathogens would be discussed as well. The highlight of this review article is to summarize the classic and novel signaling pathways involved in NF-κB and Syk signaling and then raise some possibilities for cancer therapy.


2021 ◽  
Vol 22 (11) ◽  
pp. 6071
Author(s):  
Suzanne Gascon ◽  
Jessica Jann ◽  
Chloé Langlois-Blais ◽  
Mélanie Plourde ◽  
Christine Lavoie ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood–brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.


2018 ◽  
Vol 9 ◽  
Author(s):  
Brendan F. Boyce ◽  
Jinbo Li ◽  
Lianping Xing ◽  
Zhenqiang Yao

2020 ◽  
Author(s):  
Jing Sun ◽  
wugui chen ◽  
Songtao Li ◽  
Sizhen Yang ◽  
Ying Zhang ◽  
...  

Abstract Background: Receptor activator of nuclear factor-κB ligand (RANKL) has been found to induce osteoclastogenesis and bone resorption. However, the underlying molecular mechanisms remain unclear. Methods: Osteoclastogenesis was evaluated by number of TRAP-positive multinuclear (≥3) osteoclasts, bone resorption pits and expression levels of related genes. Autophagy activity were evaluated by LC3-II/LC3-I ratio, number of autophagic vacuoles and adenovirus-mRFP-GFP-tagged LC3 reporting system; Inhibitor chloroquine (CQ) was used to verified the role of autophagy in RANKL-induced osteoclastogenesis; Via downregulating Nox4 with inhibitor (DPI) and retrovirus-conveyed shRNA, we further explored the importance of Nox4 in RANKL-induced autophagy and osteoclastogenesis, as well as the regulatory effects of Nox4 on nonmitochondrial reactive oxygen species (ROS) and PERK/eIF-2α/ATF4 pathway. Intracellular ROS scavenger (NAC), mitochondrial-targeted antioxidant (MitoTEMPO) and inhibitor of PERK (GSK2606414) were also employed to investigate the role of ROS and PERK/eIF-2α/ATF4 pathway in RANKL-induced autophagy and osteoclastogenesis. Results: RANKL markedly increased autophagy, while CQ treatment caused reduction of RANKL-induced autophagy and osteoclastogenesis. Consistent with the increased autophagy, the protein levels of Nox4 were significantly increased, and Nox4 was selectively localized within the endoplasmic reticulum (ER) after RANKL stimulation. DPI and shRNA efficiently decreased the protein level and (or) activity of Nox4 in the ER and inhibited RANKL-induced autophagy and osteoclastogenesis. Mechanistically, we found that Nox4 regulates RANKL-induced autophagy activation and osteoclastogenesis by stimulating the production of nonmitochondrial ROS. Additionally, Nox4-derived nonmitochondrial ROS dramatically activate PERK/eIF-2α/ATF4, which is a critical unfolded protein response (UPR)-related signaling pathway during ER stress. Blocking the activation of the PERK/eIF-2α/ATF4 signaling pathway either by Nox4 shRNA, ROS antioxidant or PERK inhibitor (GSK2606414) treatment significantly inhibited endoplasmic reticulum autophagy (ER-phagy) during RANKL-induced osteoclastogenesis. Conclusions: Our findings provide new insights into the processes of RANKL-induced osteoclastogenesis and will help the development of new therapeutic strategies for osteoclastogenesis-related diseases.


Author(s):  
Joseph A. Ayariga

During cartilage development, the lineage commitment and condensation of stem cells into chondrocytes and their differentiation involves a ubiquitous signaling cascades and huge numbers of transcriptional factors. The kinetic requirements and the stoichiometry for the expression of key transcriptional factors are relevant and must be met to form proper and functionally competent cartilage tissue. More interestingly also, an exact and precise spatio-temporal distribution of these molecules are as necessary in the proper tissue morphogenesis and patterning as the relevant physical conditions and micro environmental forces playing at the background during embryogenesis. A milestone of experimental achievements has been obtained over the years on several signaling pathways involved in cartilage development. Several fate determining transcriptional factors has also been investigated and determined with regards to the transition of stem cells (pluripotent, embryonic, etc.) into chondrocytes. These transcriptional factors serve as master controllers in chondrocytes proliferation and hypertrophy. Concerns that variability in signaling and transcriptional factors have detrimental effect on cartilage formation and could potentiate most cartilage related diseases have led most scientists to investigate the role of signaling molecules and transcriptional factors implicated in osteoarthritis, rheumatoid arthritis, and other cartilage degenerative diseases. On bases of spatio-temporal distribution of transcriptional factors, there exist functional overlaps, hence, it is difficult to draw a hard line of demarcation of roles at each point of the cell&rsquo;s life, nonetheless, it is also markedly established that some factors are skewed to the chondrocyte&rsquo; survival and proliferation, and others known for their master&rsquo;s role in the cell&rsquo;s apoptotic, necrotic and senescence. Here we review some published works on selected signaling pathways and transcriptional factors that are preferentially expressed in chondrogenic cells and their role as major players in cartilage formation, cartilage diseases, along with some highlights of unique signaling molecules that are indispensable in cartilage tissue regeneration and management.


2018 ◽  
Vol 19 (7) ◽  
pp. 2108 ◽  
Author(s):  
Elisabetta Rubini ◽  
Fabio Altieri ◽  
Silvia Chichiarelli ◽  
Flavia Giamogante ◽  
Stefania Carissimi ◽  
...  

Background: Organochlorine pesticides (OCPs) are widely distributed in the environment and their toxicity is mostly associated with the molecular mechanisms of endocrine disruption. Among OCPs, particular attention was focused on the effects of β-hexaclorocyclohexane (β-HCH), a widely common pollutant. A detailed epidemiological study carried out on exposed population in the “Valle del Sacco” found correlations between the incidence of a wide range of diseases and the occurrence of β-HCH contamination. Taking into account the pleiotropic role of the protein signal transducer and activator of transcription 3 (STAT3), its function as a hub protein in cellular signaling pathways triggered by β-HCH was investigated in different cell lines corresponding to tissues that are especially vulnerable to damage by environmental pollutants. Materials and Methods: Human prostate cancer (LNCaP), human breast cancer (MCF-7 and MDA-MB 468), and human hepatoma (HepG2) cell lines were treated with 10 μM β-HCH in the presence or absence of specific inhibitors for different receptors. All samples were subjected to analysis by immunoblotting and RT-qPCR. Results and Conclusions: The preliminary results allow us to hypothesize the involvement of STAT3, through both its canonical and non-canonical pathways, in response to β-HCH. Moreover, we ascertained the role of STAT3 as a master regulator of energy metabolism via the altered expression and localization of HIF-1α and PKM2, respectively, resulting in a Warburg-like effect.


2001 ◽  
Vol 281 (2) ◽  
pp. E217-E223 ◽  
Author(s):  
Elizabeth Stephens ◽  
Patti J. Thureen ◽  
Marc L. Goalstone ◽  
Marianne S. Anderson ◽  
J. Wayne Leitner ◽  
...  

Even though the role of fetal hyperinsulinemia in the pathogenesis of fetal macrosomia in patients with overt diabetes and gestational diabetes mellitus seems plausible, the molecular mechanisms of action of hyperinsulinemia remain largely enigmatic. Recent indications that hyperinsulinemia “primes” various tissues to the mitogenic influence of growth factors by increasing the pool of prenylated Ras proteins prompted us to investigate the effect of fetal hyperinsulinemia on the activitiy of farnesyltransferase (FTase) and the amounts of farnesylated p21 Ras in fetal tissues in the ovine experimental model. Induction of fetal hyperinsulinemia by direct infusion of insulin into the fetus and by either fetal or maternal infusions of glucose resulted in significant increases in the activity of FTase and the amounts of farnesylated p21 Ras in fetal liver, skeletal muscle, fat, and white blood cells. An additional infusion of somatostatin into hyperglycemic fetuses blocked fetal hyperinsulinemia and completely prevented these increases, specifying insulin as the causative factor. We conclude that the ability of fetal hyperinsulinemia to increase the size of the pool of farnesylated p21 Ras may prime fetal tissues to the action of other growth factors and thereby constitute one mechanism by which fetal hyperinsulinemia could induce macrosomia in diabetic pregnancies.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 409 ◽  
Author(s):  
Ion Cristóbal ◽  
Marta Sanz-Álvarez ◽  
Melani Luque ◽  
Cristina Caramés ◽  
Federico Rojo ◽  
...  

Hepatoblastoma is the most common hepatic malignancy during childhood. However, little is still known about the molecular mechanisms that govern the development of this disease. This review is focused on the recent advances regarding the study of microRNAs in hepatoblastoma and their substantial contribution to improv our knowledge of the pathogenesis of this disease. We show here that miRNAs represent valuable tools to identify signaling pathways involved in hepatoblastoma progression as well as useful biomarkers and novel molecular targets to develop alternative therapeutic strategies in this disease.


Sign in / Sign up

Export Citation Format

Share Document