scholarly journals The Late Cretaceous phosphatized ichnofauna fossils from the Eocene basal horizon of the Middle Dnieper area

2020 ◽  
Vol 29 (1) ◽  
pp. 146-153
Author(s):  
Anhelyna S. Mienasova ◽  
Maryna D. Krochak ◽  
Oleh S. Ogienko

The object of our study was phosphated remains of ichnofaunas from the basal horizon of the Kanivska suite (Eocene), which transgressively onlaps here the eroded top of the Burimska suite. The goal of the research was to reconstruct some sedimentation features of the final stages of the Late Cretaceous basin’s existence and during of the Early Eocene transgression on the Middle Dnieper area (Ukraine). The specimens of the basal horizon of the Kanivska suite (Р2kn) were sampled from the outcrops in the Melanchin Potik gulley and in a branch of the Glyadovy gulley. It is a complex of rough-medium grained gravel sandstones with shark teeth, fish bone fragments, detritus of Bivalvia and Brachiopoda. The nature of preservation and arrangement suggests that the fossils were relocated. The sample from the Glyadovy gulley is an agglomeration of phosphatized debris of various types of ichnofauna, cemented with a phosphate and sand substrate. The first type, in our opinion, is a fragment of a burrow nucleus of a crayfishlike decapod Thalassinoides Ehrenberg ichnogenus, as indicated by the surface , absence of a constructed wall and its size. The phosphorite features of the second type are cores of the burrows of the Ophiomorpha Lundgren genus with a characteristic ophiomorphic sculpture in the form of knobbles on the outer surface. The structures of the second type have certain differences in the distribution and nature of phosphate material. The described cores are interpreted as domichnia: dwelling places of fossil fauna. They were not known earlier within the Middle Dnieper area. The animals constructed a system of void ducts in the well ventilated middle ichnofossil layer with depth up to 60 cm (as can be inferred from the diameter of Thalassinoides). Although crayfish burrows can be present in any formation, it is generally thought that they are more specific for the littoral and shallow water environments. Based on the fauna composition and the phosphated debris preservation, we can assume the age of ichnofaunas is Late Cretaceous. An indirect indication of this can be the bones and teeth of Cretaceous vertebrates, found in the same basal layer, in particular, ichthyosaurus genus (Platypterygius sp.) and a phosphate concretion with ammonite remnants. Besides phosphatized ichnofauna debris, the basal level contains black odd-shaped nodules and microconcretions, composed of amorphous phosphate minerals. They contain a considerable amount of microscopic fossils of presumably phytoorganic nature and fragments of undeterrmined groups. From the fact that the phosphate material is not completely decrystallized, and that some microfossils have their initial composition, we infer that they belong to the Early Eocene.

Geosciences ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 381 ◽  
Author(s):  
Claudio Robustelli Test ◽  
Andrea Festa ◽  
Elena Zanella ◽  
Giulia Codegone ◽  
Emanuele Scaramuzzo

The strong morphological similitude of the block-in-matrix fabric of chaotic rock units (mélanges and broken formations) makes problematic the recognition of their primary forming-processes. We present results of the comparison between magnetic fabric and mesoscale structural investigations of non-metamorphic tectonic, sedimentary, and polygenetic mélanges in the exhumed Late Cretaceous to early Eocene Ligurian accretionary complex and overlying wedge-top basin succession in the Northern Apennines (northwest Italy). Our findings show that the magnetic fabric reveals diagnostic configurations of principal anisotropy of magnetic susceptibility (AMS) axes orientation that are well comparable with the mesoscale block-in-matrix fabric of mélanges formed by different processes. Broken formations and tectonic mélanges show prolate and neutral-to-oblate ellipsoids, respectively, with magnetic fabric elements being consistent with those of the mesoscale anisotropic “structurally ordered” block-in-matrix fabric. Sedimentary mélanges show an oblate ellipsoid with a clear sedimentary magnetic fabric related to downslope gravitational emplacement. Polygenetic mélanges show the occurrence of a cumulative depositional and tectonic magnetic fabric. The comparison of field and laboratory investigations validate the analysis of magnetic features as a diagnostic tool suitable to analytically distinguish the contribution of different mélange forming-processes and their mutual superposition, and to better understand the geodynamic evolution of subduction-accretion complexes.


2000 ◽  
Vol 37 (9) ◽  
pp. 1259-1273 ◽  
Author(s):  
M E McMechan

Walker Creek fault zone (WCFZ), well exposed in the western Rocky Mountains of central British Columbia near 54°, comprises a 2 km wide zone of variably deformed Neoproterozoic and Cambrian strata in fault-bounded slivers and lozenges. Extensional shear bands, subhorizontal extension lineations, slickensides, mesoscopic shear bands, and other minor structures developed within and immediately adjacent to the fault zone consistently indicate right-lateral displacement. Offset stratigraphic changes in correlative Neoproterozoic strata indicate at least 60 km of right-lateral displacement across the zone. WCFZ is the southern continuation of the Northern Rocky Mountain Trench (NRMT) fault zone. It shows a through going, moderate displacement, strike-slip fault system structurally links the NRMT and the north-central part of the Southern Rocky Mountain Trench. Strike-slip motion on the WCFZ occurred in the Late Cretaceous to Early Eocene at the same time as northeast-directed shortening in the fold-and-thrust belt. Thus, oblique convergence in the eastern part of the south-central Canadian Cordillera was apparently resolved into parallel northwest-striking zones of strike-slip and thrust faulting during the Late Cretaceous to Early Eocene. The change in the net Late Cretaceous to Early Eocene displacement direction for rocks in the Rocky Mountain trenches from north (56-54°N) to northeast (52-49°N) suggests that the disappearance of strike-slip displacement and increase in fold-and-thrust belt shortening in the eastern Cordillera between 56° and 49°N is largely the result of a north-south change in relative plate motion or strain partitioning across the Cordillera, rather than the southward transformation of right-lateral strike-slip displacement on the Tintina - NRMT fault system into compressional deformation.


1989 ◽  
Vol 26 (2) ◽  
pp. 231-243 ◽  
Author(s):  
Larry S. Lane ◽  
Edward D. Ghent ◽  
Mavis Z. Stout ◽  
Richard L. Brown

Microstructural and petrofabric analyses of mylonites from the Monashee Décollement demonstrate that the hanging wall was displaced eastward over the footwall. Microstructural kinematic indicators include shear-band foliation, asymmetric strain shadows, and S–C fabrics. Quartz c axes locally exhibit asymmetric fabrics that are consistent with the microstructural evidence for sense of shear. The kinematic evidence is reliable because multiple criteria coexist within individual specimens.Metamorphic assemblages from footwall Monashee Complex pelites at the Revelstoke damsite indicate that the peak metamorphic assemblage was sillimanite–K-feldspar–biotite–almandine–quartz ± plagioclase. Biotite–garnet geothermometry and garnet–plagioclase–sillimanite–quartz geobarometry set broad constraints on metamorphic temperatures but closer constraints on pressures, near 650 °C and 630 MPa.Comparison of these data with Late Cretaceous hornblende cooling ages from the same locality indicates that the metamorphism is at least as old as Late Cretaceous. Complex microstructures relating to repeated mylonitization and annealing render difficult the correlation of metamorphic conditions with mylonitic fabrics. Early mylonitic textures predate the metamorphic equilibration and thus are pre-Late Cretaceous in age. Postmetamorphic mylonites are well preserved, but their ages are poorly constrained. The present interpretation favours a Late Cretaceous to Paleocene age relating to compressional tectonics. However, an Early Eocene age relating to extensional shearing cannot be excluded.


2017 ◽  
Vol 81 ◽  
pp. 1137-1157 ◽  
Author(s):  
Carlos M. González-León ◽  
Luigi Solari ◽  
Martín Valencia-Moreno ◽  
Mario A. Rascon Heimpel ◽  
Jesús Solé ◽  
...  

Geology ◽  
2006 ◽  
Vol 34 (10) ◽  
pp. 837 ◽  
Author(s):  
Ben A. van der Pluijm ◽  
Peter J. Vrolijk ◽  
David R. Pevear ◽  
Chris M. Hall ◽  
John Solum

Author(s):  
James Steidtmann

In spite of rather intensive investigation into the origin of the Harebell (Late Cretaceous), Pinyon (Paleocene) and Pass Peak (Early Eocene) conglomerates in Jackson Hole and adjacent areas certain critical questions remain unanswered. The great thickness, coarseness and lateral extent imply an ancient source of considerable size and relief relatively near to present day Jackson Hole. Evidence for such a source is, however, equivocal and previous workers do not agree on its location. An even more perplexing question concerns the mechanisms by which such a huge volume of cobbles and boulders was transported from the source, wherever it was, to its depositional site. Such a system implies the existence of ancient alluvial fans on a scale unknown in modern environments.


Sign in / Sign up

Export Citation Format

Share Document