scholarly journals Macro-Micromechanical Properties of Sandy Pebble Soil of Different Coarse-Grained Content

2018 ◽  
Vol 22 (1) ◽  
pp. 65-71
Author(s):  
Junfu Lu ◽  
Di Li ◽  
Xiaoqiang Xue ◽  
Shenlin Ling

Sandy pebble stratum is a typical discrete particle unstable stratum, mainly consisting of sand and pebble. However, the effect of coarse-grained content on the stability of stratum is not clear. This paper defined the sandy pebble soil of different coarse-grained content in Chengdu City, Sichuan Province, China as the research object. Research on macro-mesomechanical properties of sandy pebble soil of different coarse-grained content was carried out using the method combining the indoor large-scale triaxial test of coarse-grained soil with the discrete element numerical triaxial test. The research results showed that the stress-strain curve of sandy pebble soil exhibited strain softening with the increase of coarse-grained content; when the confining pressure was the same, the stress peak increased and the strain when the peak was reached decreased gradually with the increase of coarse-grained content. It revealed the functional relationship between coarse-grained content and mechanical indexes of sandy pebble soil such as internal friction angle and cohesion. The internal friction angle and cohesion of sandy pebble soil linearly increased with the rise of coarse-grained material; it proposed the particle discrete element micro parameters of sandy pebble soil of different coarse-grained content, including contact modulus, friction coefficient, particle stiffness ratio, contact bond strength. The research results provided the theoretical support for the new design and construction of sandy pebble stratum project. 

2014 ◽  
Vol 900 ◽  
pp. 445-448
Author(s):  
Zhi Hua Xu ◽  
Da Wei Sun

As the high concrete faced rockfill dams construction, grain breakage gradually become the factors that influence the high dam construction which can not be ignored. This text based on the master of rockfill of shuibuya dam as the experimental material, getting and analyzing the particle breakage data under different confining pressure through the large-scale triaxial test, and the results show that the particle breakage index increases with the increase of confining pressures. The relationship between particle breakage index and confining pressure can be expressed by formula;Particle breakage increase leading to reduced internal friction angle and the shear strength of rockfill, and the author newly introduced two broken variable to describe the relationship which can be expressed by the formula between the particle breakage and internal friction angle, it has certain reference value for establishing constitutive model considering particle breakage.


2012 ◽  
Vol 594-597 ◽  
pp. 512-515
Author(s):  
Zheng Rong Zhao ◽  
Hong Xia Yang

Combined with the silty soil characteristics of the Yellow River alluvial plain and the subgrade filling of Ji-He expressway, the paper discusses silty soil, stabilized silty soil strength and stress-stain characteristics through the indoor triaxial shear test. The results show that the remodeling silty soil has obvious peak, brittle failure, low residual strength after being destroyed and the stress-strain curve shows a softening type in confining pressure 100kPa lower stress level. In the confining pressure 400kPa higher stress level, soil samples peak is not obvious,mainly plastic failure and the stress-strain curve is close to a hardening type. Compared to mixed with 8% lime, stabilized silty soil of mixed with 4% cement and 4% lime shows that the partial stress peak is more obvious when destroyed and the residual strength is drastically reduced and more incline to brittle failure. In different the age, compared to mixed with 8% lime, stabilized silty soil of mixed with 4% cement and 4% lime shows that internal friction angle becomes larger and cohesion improves gradually whose amplitude is much larger than internal friction angle. Therefore, a more effective way to stabilize the silty soil of the Yellow River alluvial plain is to select silty soil mixed with 4% cement and 4% lime.


2020 ◽  
Vol 10 (22) ◽  
pp. 8033
Author(s):  
Gyeongjo Min ◽  
Daisuke Fukuda ◽  
Sewook Oh ◽  
Gyeonggyu Kim ◽  
Younghun Ko ◽  
...  

A three-dimensional combined finite-discrete element element method (FDEM), parallelized by a general-purpose graphic-processing-unit (GPGPU), was applied to identify the fracture process of rough concrete–rock joints under direct shearing. The development process of shear resistance under the complex interaction between the rough concrete–rock joint surfaces, i.e., asperity dilatation, sliding, and degradation, was numerically simulated in terms of various asperity roughness under constant normal confinement. It was found that joint roughness significantly affects the development of overall joint shear resistance. The main mechanism for the joint shear resistance was identified as asperity sliding in the case of smoother joint roughness and asperity degradation in the case of rougher joint asperity. Moreover, it was established that the bulk internal friction angle increased with asperity angle increments in the Mohr–Coulomb criterion, and these results follow Patton’s theoretical model. Finally, the friction coefficient in FDEM appears to be an important parameter for simulating the direct shear test because the friction coefficient affects the bulk shear strength as well as the bulk internal friction angle. In addition, the friction coefficient of the rock–concrete joints contributes to the variation of the internal friction angle at the smooth joint than the rough joint.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Guang-jin Wang ◽  
Xiang-yun Kong ◽  
Chun-he Yang

The researchers cannot control the composition and structure of coarse grained soil in the indoor experiment because the granular particles of different size have the characteristics of random distribution and no sorting. Therefore, on the basis of the laboratory tests with the coarse grained soil, the HHC-Granular model, which could simulate the no sorting and random distribution of different size particles in the coarse-grained soil, was developed by use of cellular automata method. Meanwhile, the triaxial numerical simulation experiments of coarse grained soil were finished with the different composition and structure soil, and the variation of shear strength was discussed. The results showed that the internal friction angle was likely to reduce with the increasing of gravel contents in the coarse-grained soil, but the mean internal friction angle significantly increased with the increment of gravel contents. It indicated that the gravel contents of shear bands were the major factor affecting the shear strength.


2010 ◽  
Vol 143-144 ◽  
pp. 873-878
Author(s):  
Guang Jin Wang ◽  
Xiang Yun Kong ◽  
Yi Lei Gu ◽  
Chun He Yang

The strength parameters of granular coarse-grained soil are the critical factor that affects the stability of ultra-high dump. The soil particles of different size have no sorting and random distribution, which leads to the initial fabric of sample grain uncontrolled in the laboratory test of coarse-grained soil, therefore, only relying on the laboratory testing is difficult to obtain the reliable strength parameters of coarse-grained soil. Based on Cellular Automata method, combining the laboratory triaxial tests of coarse-grained soil developed the HHC-CA model which generated the coarse-grained soil samples of different initial fabric of grain to characterize the heterogeneous and random distribution of coarse-grained soil grain group. Then by means of FLAC3D, conducting triaxial numerical simulation tests of coarse-grained soil and discussing the relationship between the gravel contents of samples shear band and samples and internal friction angle. Moreover, the shear strength model for different coarse-grained contents is established. Numerical simulation results indicated that the relationship between internal friction angle of coarse-grained soil and gravel contents of samples shear band were increasing function in the same size grading. According to the increasing of samples gravel contents, the internal friction angle might reduce, but the mean internal friction angle significantly increased with the increment of samples gravel contents.


2014 ◽  
Vol 937 ◽  
pp. 585-589
Author(s):  
Fu Yong Chu

Using large-scale shearing device, isotropiclly consolidated-drained triaxial test under different confining pressures are performed for overburden material of ShuangJiangKou earth dam which relative density is 0.8. The relationship between particle breakage of coarse-grained soil and input plastic work under loading and between particle breakage and confining pressure and between particle breakage and strength of coarse-grained soil. The results show that the particle breakage of coarse-grained soil and the input plastic work under loading is closely related. The particle breakage of coarse-grained soil increase with the input plastic work and there is a relationship of power function between Bg andWp. the increase of confining pressure will lead to the increase of particle breakage of coarse-grained soil, and there is a relationship of power function between Bg and. the increase of particle breakage of coarse-grained soil will lead to the decrease of strength of coarse-grained soil, and a relationship of linear between Bg andφ.


2011 ◽  
Vol 90-93 ◽  
pp. 41-43
Author(s):  
Hong Liang ◽  
Yan Wang ◽  
Tian Ping Zhou ◽  
Zhen Tao Zhang ◽  
Zhi Gang Li ◽  
...  

Abstract. Silt in some areas of our country is very extensive, its distribution is different from the cohesive soil, or sand soil, has unique engineering characteristic. Silt regional characteristics make it has many unique physic-mechanical performance. This article take the G209 (Inner Mongolia Helin to Qingshuihe section) the roadbed silty soil as the study object, study its basic physics, the mechanical properties as well as the distortion and the intensity change rule under the dry-wet circulation, do a comprehensive and systematic analysis about varieties of basic engineering characteristic of the silt in the region Through the condition of dry-wet circulation of unconsolidated tri-axial tests, this article study the silt sample failure pattern under different degree of compaction, stress-strain relations and the change rule of strength. The test results show that: as cycle index less and confining pressure down, test sample is basically brittle failure, on the contrary case, it is behaved for plastic failure and stress-strain curve is close to sclerosis type; When cycle index increase gradually, the cohesion of silt reduced significantly ,with the increase of dry-wet circulation times internal friction angle is on the trend of the attenuation oscillation ; On this basis, we build the relationship expression of shear strength parameters cohesion internal friction angle and dry-wet circulation times.


2014 ◽  
Vol 919-921 ◽  
pp. 687-692 ◽  
Author(s):  
Fu Yong Chu

Abstract:Using large-scale shearing device, K0 consolidated-drained triaxial test and isotropiclly consolidated-drained triaxial test under different confining pressures are performed for overburden material of ShuangJiangKou earth dam which relative density is 0.9. And meanwhile, isotropically consolidated-drained triaxial test under different confining pressures are also performed for overburden material of ShuangJiangKou earth dam which relative density is 0.8. The difference of strength and deformation between under under K0-consolidation condition and isotropic consolidation condition and between under different relative density, and the influence of confining pressure, relative density and consolidation condition on the dilatancy of coarse-grained are analyzed. The results show that the strength of K0 consolidated-drained triaxial shear test is slight greater than that obtained by isotropically consolidated-drained test. The strength of coarse-grained soil increases with increase of relative density.The volume strain value of isotropically consolidated-drained triaxial shear test is bigger than that of K00 consolidated-drained test, and the volume strain value decreases with the decreases of relative density. The dilatancy of coarse-grained soil decreases with the increase of confining pressure, and increases with the increase of static lateral pressure coefficient.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaotao Ai ◽  
Guangjin Wang ◽  
Xiangyun Kong ◽  
Bo Cui ◽  
Bin Hu ◽  
...  

The scale effect is an unavoidable problem in the laboratory test of coarse-grained materials. By combining the self-developed cellular automaton program with laboratory experiments, a method of simulating the triaxial test of coarse-grained materials was proposed in this paper, and a triaxial test numerical specimen that can characterize the discontinuous, nonuniform, and heterogeneous characteristics of bulk geotechnical materials was established. The parallel grading method was adopted to create six grading curves for numerical simulation based on one in situ grading curve. The failure process and the scale effect on the strength and deformation of coarse-grained materials were analyzed and discussed. The results showed that under the same confining pressure, the peak stress and initial deformation modulus E i increased with the increase of the maximum particle size d max , while the degree of shear shrinkage and Poisson’s ration υ decreased. As the confining pressure increased, the scale effect of coarse-grained materials would be magnified. If particle breakage and migration were assumed to be neglected, the internal friction angle φ and d max would be roughly proportional, the cohesive force c fluctuated with the increase of d max , and the empirical relations between d max and c and φ were established, respectively, which provides a reference for estimating the actual shear strength parameters of coarse-grained materials on-site. The research results can provide a way of thinking for the study of the scale effect of coarse-grained materials and also have certain reference significance for inferring the strength parameters of the original-graded coarse-grained materials.


2011 ◽  
Vol 71-78 ◽  
pp. 4685-4688 ◽  
Author(s):  
Chen Wang ◽  
Chuan Ni Zhan

Gravel content is an important factor affecting the mechanical properties of clay-gravel mixtures. To study the effects of gravel content on the shear strength of clay-gravel mixtures, constant-strain-rate drained triaxial compression tests were conducted for various mixtures. The gravel contents were 30%, 40%, 50% and 70%. The confining pressures were varied from 50kPa to 300kPa. Test results indicate that the deviator stress at failure under the same confining pressure increases with the increase in gravel content. As the gravel content in the mixtures is between 30% and 50%, the shear strength is jointly attributed by clay and gravel. An increase in gravel content results in slight increases in both the cohesion intercept and internal friction angle. At gravel content of up to 70%, the shear strength of the mixture is controlled by that of the gravel, and the cohesion intercept and the internal friction angle increase sharply.


Sign in / Sign up

Export Citation Format

Share Document