Influence Factor on Dilatancy of Coarse-Grained Soil Based on Large-Scale Triaxial Test

2014 ◽  
Vol 919-921 ◽  
pp. 687-692 ◽  
Author(s):  
Fu Yong Chu

Abstract:Using large-scale shearing device, K0 consolidated-drained triaxial test and isotropiclly consolidated-drained triaxial test under different confining pressures are performed for overburden material of ShuangJiangKou earth dam which relative density is 0.9. And meanwhile, isotropically consolidated-drained triaxial test under different confining pressures are also performed for overburden material of ShuangJiangKou earth dam which relative density is 0.8. The difference of strength and deformation between under under K0-consolidation condition and isotropic consolidation condition and between under different relative density, and the influence of confining pressure, relative density and consolidation condition on the dilatancy of coarse-grained are analyzed. The results show that the strength of K0 consolidated-drained triaxial shear test is slight greater than that obtained by isotropically consolidated-drained test. The strength of coarse-grained soil increases with increase of relative density.The volume strain value of isotropically consolidated-drained triaxial shear test is bigger than that of K00 consolidated-drained test, and the volume strain value decreases with the decreases of relative density. The dilatancy of coarse-grained soil decreases with the increase of confining pressure, and increases with the increase of static lateral pressure coefficient.

2014 ◽  
Vol 937 ◽  
pp. 585-589
Author(s):  
Fu Yong Chu

Using large-scale shearing device, isotropiclly consolidated-drained triaxial test under different confining pressures are performed for overburden material of ShuangJiangKou earth dam which relative density is 0.8. The relationship between particle breakage of coarse-grained soil and input plastic work under loading and between particle breakage and confining pressure and between particle breakage and strength of coarse-grained soil. The results show that the particle breakage of coarse-grained soil and the input plastic work under loading is closely related. The particle breakage of coarse-grained soil increase with the input plastic work and there is a relationship of power function between Bg andWp. the increase of confining pressure will lead to the increase of particle breakage of coarse-grained soil, and there is a relationship of power function between Bg and. the increase of particle breakage of coarse-grained soil will lead to the decrease of strength of coarse-grained soil, and a relationship of linear between Bg andφ.


2014 ◽  
Vol 936 ◽  
pp. 1387-1392
Author(s):  
Fu Yong Chu

Using large-scale shearing device, isotropiclly consolidated-drained triaxial test under different confining pressures are performed for overburden material of ShuangJiangKou earthdam which relative density is 0.9. The engineering characteristics of coarse-grained soil such as strength and deformation is studied. The results show the peak strength of coarse-grained soil under isotropically increase with the confining pressure and there is a relationship of linear between the peak strength of coarse-grained soil and initial modulus. The volume strain value of isotropically consolidated-drained triaxial shear test increase with increase of confining pressure, and the dilatancy decrease increase with increase of confining pressure. The secant modulusEs1and the tangent modulusEt1obtained by the tests both increase with increase with increase of confining pressure, and the values ofEs1/EiandEt1/Eiare all smaller than one. The failure poisson ratioνifobtained by the tests both decrease with increase with increase of confining pressure, and there is a relationship of power function between νif and .


2018 ◽  
Vol 22 (1) ◽  
pp. 65-71
Author(s):  
Junfu Lu ◽  
Di Li ◽  
Xiaoqiang Xue ◽  
Shenlin Ling

Sandy pebble stratum is a typical discrete particle unstable stratum, mainly consisting of sand and pebble. However, the effect of coarse-grained content on the stability of stratum is not clear. This paper defined the sandy pebble soil of different coarse-grained content in Chengdu City, Sichuan Province, China as the research object. Research on macro-mesomechanical properties of sandy pebble soil of different coarse-grained content was carried out using the method combining the indoor large-scale triaxial test of coarse-grained soil with the discrete element numerical triaxial test. The research results showed that the stress-strain curve of sandy pebble soil exhibited strain softening with the increase of coarse-grained content; when the confining pressure was the same, the stress peak increased and the strain when the peak was reached decreased gradually with the increase of coarse-grained content. It revealed the functional relationship between coarse-grained content and mechanical indexes of sandy pebble soil such as internal friction angle and cohesion. The internal friction angle and cohesion of sandy pebble soil linearly increased with the rise of coarse-grained material; it proposed the particle discrete element micro parameters of sandy pebble soil of different coarse-grained content, including contact modulus, friction coefficient, particle stiffness ratio, contact bond strength. The research results provided the theoretical support for the new design and construction of sandy pebble stratum project. 


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Fang Xu ◽  
Wuming Leng ◽  
Rusong Nie ◽  
Qishu Zhang ◽  
Qi Yang

A new prestressed reinforcement device (PRD) consisting of two lateral pressure plates (LPPs) and a reinforcement bar is developed to strengthen soil embankments by improving the soil confining pressure and providing lateral constraint on embankment slopes. The reinforcement effects of PRDs were demonstrated by investigating the beneficial effects of increasing confining pressure on the soil behavior via the performance of a series of large-scale static and cyclic triaxial tests on a coarse-grained embankment soil. The results show that PRDs can effectively improve the soil shear strength, bearing capacity, ability to resist elastic and plastic deformation, critical dynamic stress, and dynamic shear modulus, and empirical methods were also developed to determine the critical dynamic stress and initial dynamic shear modulus of the embankment soil. Moreover, 3D finite element analyses (FEAs) with an LPP width of 1.2 m were performed to analyze the additional stress field in a prestressed heavy-haul railway embankment. The FEAs showed that the additional stress at a given external distance from the border of an LPP first increased to a maximum value and then gradually decreased with increasing depth; the additional stress was transferred to the zones where the subgrade tends to have higher stresses with peak stress diffusion angles of 34° (slope direction) and 27° (longitudinal direction); and a continuous effective reinforcement zone with a minimum additional stress coefficient of approximately 0.2 was likely to form at the diffusion surface of the train loads, provided that the net spacing of the LPPs was 0.7 m. The reinforcement zone above the diffusion surface of the train loads can act as a protective layer for the zones that tend to have higher stresses. Finally, the advantages and application prospects of PRDs are discussed in detail. The newly developed PRDs may provide a cost-effective alternative for strengthening soil embankments.


1995 ◽  
Vol 41 (139) ◽  
pp. 528-540 ◽  
Author(s):  
R. E. Gagnon ◽  
P. H. Gammon

Abstract Triaxial experiments, at confining pressures in the range 0–13.79 MPa, have been performed on glacial ice collected from four icebergs and one glacier. Tests were conducted at strain rates in the range of 5 × 10−5 to 5 × 10−5s−1 and at four temperatures in the range of −1° to −16°C. Depending on test conditions, the ice failed by one of four possible modes ductile deformation, due to extensive non-interacting microcracks; fracture along a shear plane followed by continuous or stick-slip sliding; large-scale brittle fracture; and combined ductile and shear-plane fracture and slip The strength Increased with decreasing temperature, increasing strain rate up to 5 × 10−3s−1 and increasing confining pressure at the lower temperatures. The strength at 5 × 10−2s−1 was lower than at 5 × 10−3s−1 probably because extension and interaction of microcracks is enhanced at the higher rate. For higher confining pressures at −1°C, the strength decreased due to freezing-point depression. The ice from the different sources exhibited different mean uniaxial compressive strengths. The mean number of air bubbles per unit volume correlated with the mean uniaxial compressive strengths and this may be the dominant factor distinguishing the strengths of the various ice types.


2013 ◽  
Vol 291-294 ◽  
pp. 2657-2661
Author(s):  
Xiu Mei Qiu ◽  
Han Bing Bian

The mechanical behavior of a compacted unsaturated clay soil was experimentally investigated. Volume changes were investigated using a conventional odometer cell under a series of constant confining pressures, following a wetting path. The special loading paths were utilized to reflect field conditions associated with the compacted earth structure in earth filled embankment. The soils used in the experiments were taken from an earth dam. The compacted specimens were consolidated under k0-oedometer conditions. The volume change and the water content variation were measured during the tests. The influence of the confining pressure and the initial water saturation were taking into considerations. The experimental results show that the volumetric deformation properties of the remolded unsaturated soil could be expansive and/or contractive, depending on the confining pressure and the initial water saturation. It is also observed that for the mediate confining stress, there volumetric deformation of specimen applied to wetting loads has a transition from dilation to contraction.


2014 ◽  
Vol 900 ◽  
pp. 445-448
Author(s):  
Zhi Hua Xu ◽  
Da Wei Sun

As the high concrete faced rockfill dams construction, grain breakage gradually become the factors that influence the high dam construction which can not be ignored. This text based on the master of rockfill of shuibuya dam as the experimental material, getting and analyzing the particle breakage data under different confining pressure through the large-scale triaxial test, and the results show that the particle breakage index increases with the increase of confining pressures. The relationship between particle breakage index and confining pressure can be expressed by formula;Particle breakage increase leading to reduced internal friction angle and the shear strength of rockfill, and the author newly introduced two broken variable to describe the relationship which can be expressed by the formula between the particle breakage and internal friction angle, it has certain reference value for establishing constitutive model considering particle breakage.


2004 ◽  
Vol 467-470 ◽  
pp. 579-584 ◽  
Author(s):  
A. Kellermann Slotemaker ◽  
J.H.P. de Bresser ◽  
C.J. Spiers ◽  
M.R. Drury

Microstructures provide the crucial link between solid state flow of rock materials in the laboratory and large-scale tectonic processes in nature. In this context, microstructural evolution of olivine aggregates is of particular importance, since this material controls the flow of the Earth’s upper mantle and affects the dynamics of the outer Earth. From previous work it has become apparent that if olivine rocks are plastically deformed to high strain, substantial weakening may occur before steady state mechanical behaviour is approached. This weakening appears directly related to progressive modification of the grain size distribution through competing effects of dynamic recrystallization and syn-deformational grain growth. However, most of our understanding of these processes in olivine comes from tests on coarse-grained materials that show grain size reduction through dynamic recrystallization. In the present study we focused on fine-grained (~1 µm) olivine aggregates (i.e., forsterite/Mg2SiO4), containing ~0.5 wt% water and 10 vol% enstatite (MgSiO3), Samples were axially compressed to varying strains up to a maximum of ~45%, at 600 MPa confining pressure and a temperature of 950°C. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. We observed syndeformational grain growth rather than grain size reduction, and relate this to strain hardening seen in the stress-strain curves.


2011 ◽  
Vol 261-263 ◽  
pp. 1598-1602
Author(s):  
Jia Jun Pan ◽  
Xi Bao Rao ◽  
Yong Zhen Zuo

Large-scale triaxial test has been conducted on various rockfill materials in an attempt to study the degrees of grain breakage. The result has shown that, the grain breakage occurred during sample preparation can not be neglected, and to maintain the initial gradation design prior to consolidation, the gradation design shall be adjusted downwards to a certain extent accordingly before sample preparation. The breakage of large-sized grains mainly occurs on the surface, and the grain breakage and confining pressure has shown linear relations after triaxial test.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shengnian Wang ◽  
Xinqun Gao ◽  
Wei Ma ◽  
Guoyu Li ◽  
Chong Shi ◽  
...  

The contribution of gravel fraction on the maximum shear modulus (Gmax), dynamic shear modulus ratio (G/Gmax), and damping ratio (λ) of cementitious coarse-grained soils has not been fully understood yet. Large-scale triaxial cyclic tests for geopolymer-stabilized coarse-grained soils (GSCGSs) were conducted with different volumetric block proportions (VBPs) under various confining pressures (CPs) for investigating their dynamic behaviors and energy dissipation mechanisms. Results indicate that the Gmax of GSCGS increases linearly with VBPs but nonlinearly with CP. High VBPs will probably result in a gentle decrease in G/Gmax and a rapid increase in normalized λ (λnor), while the opposite is the case for a high CP. With the shear strain amplitude being normalized, the G/Gmax and λnor are distributed in a narrow band with low dispersion and thus can be well-described by empirical functions of the normalized shear strain amplitude.


Sign in / Sign up

Export Citation Format

Share Document