scholarly journals Antibacterial, antifungal, and antiviral activities of chalcone-bearing tetrahydropyranyl and 2,4-dihydroxyl moieties

Author(s):  
William Gustavo Lima ◽  
Jéssica Tauany Andrade ◽  
Felipe Rocha da Silva Santos ◽  
Juliana Maria Campos Palumbo ◽  
Karina Marjorie Silva Herrera ◽  
...  

Chalcones highlights as an important structure in medicinal chemistry and thus has been widely used as a template in the development of new drugs. In this study, we aim to determine the antibacterial, anti-Candida, and anti-Dengue potential of new chalcone-bearing 2,4-dihydroxyl and tetrahydropyranyl moieties. Antimicrobial activity assays showed that microorganism of the Staphylococcus genus (including methicillin-resistant strains) were susceptible to 2,4-dihydroxychalcones, with minimum inhibitory concentrations (MICs) ranging of 19.5 to 125 µg.mL-1. Compound 4e, which showed the highest bacteriostatic effect, also has bactericidal activity from of 80 µg.mL-1. The growth of oral isolates of Candida albicans was also efficiently inhibited with compound 4e (MIC: 15.6–32.3 µg.mL-1), which was fungicidal at 15.6 µg.mL-1. However, the presence of the tetrahydropyranyl moiety impaired both the antibacterial and antifungal effects. None of the chalcones tested were actives against Dengue virus serotype 2. In conclusion, the compound 4e showed good anti-Staphylococci and anti-Candida activity and may be a promising prototype for the development of new antimicrobial agents.

2022 ◽  
Vol 11 (1) ◽  
pp. 113-120 ◽  
Author(s):  
A.L. Arunachalam ◽  
S. Induja ◽  
V. Parthasarathy ◽  
P.S. Raghavan

Microbes generally develop resistance towards organic antibacterial agents like ampicillin, Sulfonamides, methicillin, etc., and progressively new drugs are being invented to replace them. Hence, replacement of organic antibacterial agents with inorganic analogues requires constant research and the present investigation reports alternatives for conventional antimicrobial agents like methylparaben, diazolidinyl urea, etc., in the cosmetic products with silver incorporated calcium borates. The chemically synthesized silver-calcium borates have been analyzed for phase purity using powder XRD analysis, nature of bonding using FTIR vibrations, and morphology using SEM. The antibacterial and antifungal studies were carried out for the novel inorganic silver-calcium borates incorporated cosmetic products. The products were also subjected to thermal & photostability studies and found to be comparable with that of commercially available products. A minimum quantity of 3 ppm of silver-calcium borate concentration was required to bring about nearly 100% bacterial reduction in the cosmetic products.


2019 ◽  
pp. 56-62 ◽  
Author(s):  
Y. V. Korotkii ◽  
N. A. Vrynchanu ◽  
M. L. Dronova ◽  
Z. S. Suvorova ◽  
O. A. Smertenko

The emergence and spread of resistant strains of pathogens as well as reduction of the efficacy of current antimicrobial agents requires the development of novel antimicrobial compounds. The aim of the present study was synthesis and evaluation of antimicrobial activity of new arylaliphatic aminopropanols. The objects of the present study were 1-[4-(1,1,3,3-tetramethylbutyl)phenoxy]-3-dialkylamino-2-propanol quaternary salts (compounds I–XIV). Compounds synthesis was carried out by heating of precursor epoxide and excessive amount of appropriate amines in isopropanole, followed by treatment with excess of alkyl halides. Methods of elemental analysis, IR- and PMR-spectroscopy were used for confirmation of chemical structure. Antimicrobial activity against Staphylococcus аureus АTCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa АТСС 27853 and Candida albicans NCTC 885/653 was determined by a broth dilution method and evaluated via minimum inhibitory concentration (MIC). Our investigation of antibacterial and antifungal activity of 1-[4-(1,1,3,3-tetra methylbutyl)phenoxy]-3-dialkylamino-2-propanol quaternary salts showed that compounds possess narrow spectrum, as well as broad spectrum action. Significant antimicrobial activity of the novel aryl aliphatic aminoalcohols indicates their potential usage as a component of new antimicrobial drugs.


Author(s):  
Serifat Olatundun Salami ◽  
Anthony Jide Afolayan

Aims: The use of synthetic antibiotics has been the major way of curing diseases; however, over-use of antibiotics has led to emergence of multi-drug-resistant strains of several groups of microorganisms. This study aimed at examining roselle extracts for antimicrobial properties with a view to providing the best alternative to the injudicious use of synthetic antibiotics and also examines the toxicological effects of roselle extracts. Methodology: Ethanolic and aqueous extracts of roselle leaves and calyces were evaluated for antimicrobial activity based on minimum inhibitory concentration (MIC50) using Broth dilution method. The toxicological effects based on LC50 were also evaluated using Brine shrimp- Artemia salina. Simple percentage was used to determine the mortality rate of the nauplii while the minimum inhibitory concentrations of the extracts were determined using MINITAB 17 statistical package (P<0.05). Data were expressed as mean ± standard deviation of three replicates. Results: Roselle calyces, pre-flowering green and flowering red exhibited excellent inhibition to bacteria. Calyces had better antimicrobial activities and higher toxicological effects than the leaves. Green roselle at pre-flowering stage and red flowering were good for antimicrobial screening. Conclusion: Roselle extracts possessed excellent antibacterial and antifungal properties. These can be explored to develop new drugs, which can suppress the resistant strains. All the plant extracts were greater than 1000 mg/mL, which indicates that they were non-toxic to brine shrimp larvae.


2020 ◽  
Vol 23 (2) ◽  
pp. 126-140 ◽  
Author(s):  
Christophe Tratrat

Aims and Objective: The infectious disease treatment remains a challenging concern owing to the increasing number of pathogenic microorganisms associated with resistance to multiple drugs. A promising approach for combating microbial infection is to combine two or more known bioactive heterocyclic pharmacophores in one molecular platform. Herein, the synthesis and biological evaluation of novel thiazole-thiazolidinone hybrids as potential antimicrobial agents were dissimilated. Materials and Methods: The preparation of the substituted 5-benzylidene-2-thiazolyimino-4- thiazolidinones was achieved in three steps from 2-amino-5-methylthiazoline. All the compounds have been screened in PASS antibacterial activity prediction and in a panel of bacteria and fungi strains. Minimum inhibitory concentration and minimum bacterial concentration were both determined by microdilution assays. Molecular modeling was conducted using Accelrys Discovery Studio 4.0 client. ToxPredict (OPEN TOX) and ProTox were used to estimate the toxicity of the title compounds. Results: PASS prediction revealed the potentiality antibacterial property of the designed thiazolethiazolidinone hybrids. All tested compounds were found to kill and to inhibit the growth of a vast variety of bacteria and fungi, and were more potent than the commercial drugs, streptomycin, ampicillin, bifomazole and ketoconazole. Further, in silico study was carried out for prospective molecular target identification and revealed favorable interaction with the target enzymes E. coli MurB and CYP51B of Aspergillus fumigatus. Toxicity prediction revealed that none of the active compounds was found toxic. Conclusion: Substituted 5-benzylidene-2-thiazolyimino-4-thiazolidinones, endowing remarkable antibacterial and antifungal properties, were identified as a novel class of antimicrobial agents and may find a potential therapeutic use to eradicate infectious diseases.


2019 ◽  
Vol 19 (8) ◽  
pp. 567-578 ◽  
Author(s):  
Marcus Vinicius Nora de Souza ◽  
Thais Cristina Mendonça Nogueira

Nowadays, tuberculosis (TB) is an important global public health problem, being responsible for millions of TB-related deaths worldwide. Due to the increased number of cases and resistance of Mycobacterium tuberculosis to all drugs used for the treatment of this disease, we desperately need new drugs and strategies that could reduce treatment time with fewer side effects, reduced cost and highly active drugs against resistant strains and latent disease. Considering that, 4H-1,3-benzothiazin-4-one is a promising class of antimycobacterial agents in special against TB-resistant strains being the aim of this review the discussion of different aspects of this chemical class such as synthesis, mechanism of action, medicinal chemistry and combination with other drugs.


2020 ◽  
Vol 20 (14) ◽  
pp. 1264-1273 ◽  
Author(s):  
Bruno Casciaro ◽  
Floriana Cappiello ◽  
Walter Verrusio ◽  
Mauro Cacciafesta ◽  
Maria Luisa Mangoni

The frequent occurrence of multidrug-resistant strains to conventional antimicrobials has led to a clear decline in antibiotic therapies. Therefore, new molecules with different mechanisms of action are extremely necessary. Due to their unique properties, antimicrobial peptides (AMPs) represent a valid alternative to conventional antibiotics and many of them have been characterized for their activity and cytotoxicity. However, the effects that these peptides cause at concentrations below the minimum growth inhibitory concentration (MIC) have yet to be fully analyzed along with the underlying molecular mechanism. In this mini-review, the ability of AMPs to synergize with different antibiotic classes or different natural compounds is examined. Furthermore, data on microbial resistance induction are reported to highlight the importance of antibiotic resistance in the fight against infections. Finally, the effects that sub-MIC levels of AMPs can have on the bacterial pathogenicity are summarized while showing how signaling pathways can be valid therapeutic targets for the treatment of infectious diseases. All these aspects support the high potential of AMPs as lead compounds for the development of new drugs with antibacterial and immunomodulatory activities.


2018 ◽  
Vol 16 (1) ◽  
pp. 3-10
Author(s):  
Aniket P. Sarkate ◽  
Kshipra S. Karnik ◽  
Pravin S. Wakte ◽  
Ajinkya P. Sarkate ◽  
Ashwini V. Izankar ◽  
...  

Background:A novel copper-catalyzed synthesis of substituted-1,2,3-triazole derivatives has been developed and performed by Huisgen 1,3-dipolar cycloaddition reaction of azides with alkynes. The reaction is one-pot multicomponent.Objective:We state the advancement and execution of a methodology allowing for the synthesis of some new substituted 1,2,3-triazole analogues with antimicrobial activity.Methods:A series of triazole derivatives was synthesized by Huisgen 1,3-dipolar cycloaddition reaction of azides with alkynes. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, IR, MS and elemental analysis. All the synthesized compounds were tested for their antimicrobial activity against a series of strains of Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and against the strains of Candida albicans, Aspergillus flavus and Aspergillus nigar for antifungal activity, respectively.Results and Conclusion:From the antimicrobial data, it was observed that all the newly synthesized compounds showed good to moderate level of antibacterial and antifungal activity.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Akshaykumar Nayak ◽  
Himani Saxena ◽  
Chandramohan Bathula ◽  
Tarkeshwar Kumar ◽  
Souvik Bhattacharjee ◽  
...  

Abstract Background Despite numerous efforts to eradicate the disease, malaria continues to remain one of the most dangerous infectious diseases plaguing the world. In the absence of any effective vaccines and with emerging drug resistance in the parasite against the majority of anti-malarial drugs, the search for new drugs is urgently needed for effective malaria treatment. Methods The goal of the present study was to examine the compound library, based on indoles generated through diversity-oriented synthesis belonging to four different architecture, i.e., 1-aryltetrahydro/dihydro-β-carbolines and piperidine/pyrrolidine-fused indole derivatives, for their in vitro anti-plasmodial activity. Trifluoroacetic acid catalyzed transformation involving tryptamine and various aldehydes/ketones provided the library. Results Among all the compounds screened, 1-aryltetrahydro-β-carbolines 2 and 3 displayed significant anti-plasmodial activity against both the artemisinin-sensitive and artemisinin-resistant strain of Plasmodium falciparum. It was observed that these compounds inhibited the overall parasite growth in intra-erythrocytic developmental cycle (IDC) via reactive oxygen species-mediated parasitic death and thus could be potential anti-malarial compounds. Conclusion Overall the compounds 2 and 3 identified in this study shows promising anti-plasmodial activity that can kill both artemisinin-sensitive and artemisinin-resistant strains of P. falciparum.


2008 ◽  
Vol 116 (Supplement) ◽  
pp. S1-S4 ◽  
Author(s):  
Yoshihiro MIHARA ◽  
Tomoya TAKADA ◽  
Naotsugu UNO ◽  
Iwao TOGASHI ◽  
Keisuke SUGIMOTO

mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Jake Everett ◽  
Keith Turner ◽  
Qiuxian Cai ◽  
Vernita Gordon ◽  
Marvin Whiteley ◽  
...  

ABSTRACT Environmental conditions affect bacterial behavior and can greatly influence the course of an infection. However, the environmental cues that elicit bacterial responses in specific infection sites are relatively unknown. Pseudomonas aeruginosa is ubiquitous in nature and typically innocuous. However, it is also one of the most prevalent causes of fatal sepsis in burn wound patients. The aim of this study was to determine the impact of environmental factors, specifically the availability of arginine, on the pathogenesis of P. aeruginosa in burn wound infections. Comparison of burned versus noninjured tissue revealed that l-arginine (l-Arg) was significantly depleted in burn wounds as a consequence of elevated arginase produced by myeloid-derived suppressor cells. We also observed that l-Arg was a potent chemoattractant for P. aeruginosa, and while low concentrations of l-Arg increased P. aeruginosa’s swimming motility, high concentrations resulted in diminished swimming. Based on these observations, we tested whether the administration of exogenous l-Arg into the burn wound could attenuate the virulence of P. aeruginosa in thermally injured mice. Administration of l-Arg resulted in decreased P. aeruginosa spread and sepsis and increased animal survival. Taken together, these data demonstrate that the availability of environmental arginine greatly influences the virulence of P. aeruginosa in vivo and may represent a promising phenotype-modulating tool for future therapeutic avenues. IMPORTANCE Despite our growing understanding of the pathophysiology of burn wounds and the evolution of techniques and practices to manage infections, sepsis remains a significant medical concern for burn patients. P. aeruginosa continues to be a leader among all causes of bacteremic infections due to its tendency to cause complications in immunocompromised patients and its ubiquitous presence in the hospital setting. With the unforgiving emergence of multidrug-resistant strains, it is critical that alternative strategies to control or prevent septic infections in burn patients be developed in parallel with novel antimicrobial agents. In this study, we observed that administration of l-Arg significantly reduced bacterial spread and sepsis in burned mice infected with P. aeruginosa. Given the safety of l-Arg in high doses and its potential wound-healing benefits, this conditionally essential amino acid may represent a useful tool to modulate bacterial behavior in vivo and prevent sepsis in burn patients. IMPORTANCE Despite our growing understanding of the pathophysiology of burn wounds and the evolution of techniques and practices to manage infections, sepsis remains a significant medical concern for burn patients. P. aeruginosa continues to be a leader among all causes of bacteremic infections due to its tendency to cause complications in immunocompromised patients and its ubiquitous presence in the hospital setting. With the unforgiving emergence of multidrug-resistant strains, it is critical that alternative strategies to control or prevent septic infections in burn patients be developed in parallel with novel antimicrobial agents. In this study, we observed that administration of l-Arg significantly reduced bacterial spread and sepsis in burned mice infected with P. aeruginosa. Given the safety of l-Arg in high doses and its potential wound-healing benefits, this conditionally essential amino acid may represent a useful tool to modulate bacterial behavior in vivo and prevent sepsis in burn patients.


Sign in / Sign up

Export Citation Format

Share Document