scholarly journals Methane emissions of extensive grazing breeding herds in relation to the weaning and yearling stages in the Eastern Plains of Colombia

2019 ◽  
Vol 66 (2) ◽  
pp. 111-130 ◽  
Author(s):  
Carlos Alberto Ramírez-Restrepo ◽  
Raúl Ramón Vera-Infanzón

A substantial proportion of beef production in Colombia originates in its extensiveEastern Plains. However, in this scenario and in a global context, demand for cattleproduction increasingly requests that it satisfies social and environmental expectationsin addition to being economically efficient. A dataset containing five-year long recordsof cow-calf production systems collected at Carimagua Research Centre located in theMeta Department was retrospectively interrogated to understand the liveweight (LW)-derived flux matrix dynamics of methane (CH4) emissions. Estimated total CH4 (kg)emissions during the gestation period, were similar between conventional weaned (CW;37.86 ± 0.506 kg) and early weaned (EW; 37.47 ± 0.476 kg) cows. However, averagedover two lactations, total CH4 emissions were larger (p < 0.0001) in CW cows (38.67± 0.456 kg) than in their EW (14.40 ± 0.435 kg) counterparts. Total gas emissionsfrom birth to comparable commercial yearlings age were higher (p < 0.0001) for CW(43.11 ± 0.498 kg) calves than for EW (40.27 ± 0.472 kg) calves. It was concluded thatmid and long-term pastoral datasets and new concerns are well suited to understanddifferent contexts and adaptations to the contemporary weather conditions. Nevertheless,conventional farming systems will be less environmentally vulnerable if EWmanagement practices involve the strategic and temporal use of improved pastures. Theroles of veterinary medicine and animal sciences are briefly discussed in the context ofunprecedented climate variability to provide a guide to the uncertain future.

2008 ◽  
Vol 48 (7) ◽  
pp. 930 ◽  
Author(s):  
L. J. Cummins ◽  
C. A. Morris ◽  
B. W. Kirkpatrick

Long-term selection programs in the United States and New Zealand have developed twinning herds. In Nebraska, the United States Meat Animal Research Centre population had a calving rate of 1.56 per parturition in 2004. They have shown that the location of ovulation has an important effect on the success of pregnancy and that ovulations ≥3 are probably undesirable. These cattle have issues associated with calving difficulty and calf survival, which present challenges for commercial application. Intensive management using existing technology and/or future genetic improvement to address these traits are required to realise the potential benefits to beef production systems.


1995 ◽  
Vol 24 (1) ◽  
pp. 136-137
Author(s):  
Wayne S. Roberts ◽  
Scott M. Swinton

A long term whole farm analysis comparing conventional and low-input farming systems is reviewed. A computational error led to the mistaken conclusion that conventional farming with government programs is less preferred by risk-averse farmers than the low input alternative. The greater income variance of conventional agriculture need not make it less preferred provided a higher mean income sufficiently offsets the higher variance.


HortScience ◽  
2022 ◽  
Vol 57 (2) ◽  
pp. 239-246
Author(s):  
Krishna Nemali

Modern greenhouses are intensive farming systems designed to achieve high efficiency and productivity. Plants are produced year-round in greenhouses by maintaining the environment at or near optimum levels regardless of extreme weather conditions. Many scientific discoveries and technological advancements that happened in the past two centuries paved the way for current state-of-the-art greenhouses. These include, but are not limited to, advancements in climate-specific structural designs and glazing materials, and temperature control, artificial lighting, and hydroponic production systems. Greenhouse structures can be broadly grouped into four distinct designs, including tall Venlo greenhouses of the Netherlands, passive solar greenhouses of China, low-cost Parral greenhouses of the Mediterranean region, and gutter-connected polyethylene houses of India and African countries. These designs were developed to suit local climatic conditions and maximize the return on investment. Although glass and rigid plastic options are available for glazing, the development of low-cost and lightweight plastic glazing materials (e.g., polyethylene) enabled widespread growth of the greenhouse industry in the developing world. For temperate regions, supplemental lighting technology is crucial for year-round production. This heavily relies on advancements in electro-lighting during the 19th and 20th centuries. The development of hydroponic production systems for the controlled delivery of nutrients further enhanced crop productivity. This article addresses important historical events, scientific discoveries, and technological improvements related to advancements in these areas.


Author(s):  
C.D.A. Brown ◽  
K.F. Thompson

Ostrich are currently being promoted as an alternative to sheep, cattle and deer. Although current bird prices are not sustainable, New Zealand and overseas experience to date suggest ostrich can be farmed successfully and profitability long term. Climate and terrain of the east coast of New Zealand suit ostrich physical requirements. It has been suggested that production systems will develop in which grazed herbage will provide 60% or more of the nutritional requirements. The ability to graze low-cost herbage combined with a reproduction rate of about 25 progeny per hen per year indicate that ostrich production systems may be three times more efficient than beef or deer at turning feed into lean meat. The low fat and low cholesterol meat is likely to be the primary product and is already being sold in international markets. There is also a market for the leather, feathers and oil by-products. Keywords: diversification, east coast, farming systems, meat, ostrich


2018 ◽  
Vol 10 (2) ◽  
pp. 23
Author(s):  
Robert P. Burdock ◽  
Peter Ampt

This paper presents a classification of agricultural production systems that we believe characterises the complex interface between agriculture and the landscapes in which they are managed. Farmers have a choice about how they will manage their land, either to exclude inherent environmental complexity or to engage with it, mindful of risks associated with their approach. Adding to this complexity is the interplay between key natural, social, human, physical and financial resources in agricultural systems, highlighting the importance of extending sustainability principles to aspects of ecology, economics and culture. Decisions about agricultural systems hinge on a balance of productive outcomes, on sensitivity to the issues of environmental complexity, on economic grounds including the access to resources, and the socio-cultural needs of the community in which the farmer participates. Further, farm managers will make a choice that both satisfies and suffices (satisfices) against production, ecological efficiencies and resilience outcomes when choosing which food production system to adopt. In this paper, these complexities are analysed against five different agricultural systems on an ecological continuum; from biologically simple industrial systems that minimise interaction with the natural environment, to ecologically complex systems that are closely engaged with their environment. Production viability is a necessary consideration to maintain farming operations but is not sufficient if operational capacity is to be achieved in the long term. This analysis finds that it is also necessary to work with ecological, economic and social complexities, satisficing against productivity, ecological efficiency and inherit system resilience. No one particular farming systems is appropriate in all cases. The farmer’s choice may apply a mix of the five different agricultural systems described, allowing for the blending of these attributes in order to sustain rural landscapes.


2008 ◽  
Vol 48 (4) ◽  
pp. 387 ◽  
Author(s):  
B. S. Dear ◽  
M. A. Ewing

Increasing the proportion of the landscape planted to deep-rooted perennial pasture species is recognised as one of several remedial actions required for the control of dryland salinity in southern Australia. The widespread use of perennials in farming systems is limited at present by the lack of well-adapted perennials that can be grown to reduce recharge in a landscape where drought, soil acidity, temporary waterlogging, infertile soils and unrestricted grazing prohibit the use of many species. The range of plants adapted to salinity also needs to be expanded to stabilise and ameliorate soils already degraded by rising watertables and to increase the profitability of grazing discharge regions within the landscape. This paper describes the steps involved in a national forage screening and breeding program initiated by the Cooperative Research Centre (CRC) for Plant-based Management of Dryland Salinity1, seeking to expand the range of perennial and or salt-tolerant forage plants that can be incorporated into farming systems of southern Australia. It describes the target environments, soil constraints, farming systems and the criteria being considered when assessing the potential of new plants, including assessment of the weed risk posed by introducing new species. This paper forms an introduction to a special issue which presents the outcomes of the pasture species field evaluation and plant breeding program conducted by the CRC.


Sign in / Sign up

Export Citation Format

Share Document