scholarly journals The Characteristics of Five Food Production Systems and Their Implications for Sustainable Landscapes

2018 ◽  
Vol 10 (2) ◽  
pp. 23
Author(s):  
Robert P. Burdock ◽  
Peter Ampt

This paper presents a classification of agricultural production systems that we believe characterises the complex interface between agriculture and the landscapes in which they are managed. Farmers have a choice about how they will manage their land, either to exclude inherent environmental complexity or to engage with it, mindful of risks associated with their approach. Adding to this complexity is the interplay between key natural, social, human, physical and financial resources in agricultural systems, highlighting the importance of extending sustainability principles to aspects of ecology, economics and culture. Decisions about agricultural systems hinge on a balance of productive outcomes, on sensitivity to the issues of environmental complexity, on economic grounds including the access to resources, and the socio-cultural needs of the community in which the farmer participates. Further, farm managers will make a choice that both satisfies and suffices (satisfices) against production, ecological efficiencies and resilience outcomes when choosing which food production system to adopt. In this paper, these complexities are analysed against five different agricultural systems on an ecological continuum; from biologically simple industrial systems that minimise interaction with the natural environment, to ecologically complex systems that are closely engaged with their environment. Production viability is a necessary consideration to maintain farming operations but is not sufficient if operational capacity is to be achieved in the long term. This analysis finds that it is also necessary to work with ecological, economic and social complexities, satisficing against productivity, ecological efficiency and inherit system resilience. No one particular farming systems is appropriate in all cases. The farmer’s choice may apply a mix of the five different agricultural systems described, allowing for the blending of these attributes in order to sustain rural landscapes.

2019 ◽  
Vol 66 (2) ◽  
pp. 111-130 ◽  
Author(s):  
Carlos Alberto Ramírez-Restrepo ◽  
Raúl Ramón Vera-Infanzón

A substantial proportion of beef production in Colombia originates in its extensiveEastern Plains. However, in this scenario and in a global context, demand for cattleproduction increasingly requests that it satisfies social and environmental expectationsin addition to being economically efficient. A dataset containing five-year long recordsof cow-calf production systems collected at Carimagua Research Centre located in theMeta Department was retrospectively interrogated to understand the liveweight (LW)-derived flux matrix dynamics of methane (CH4) emissions. Estimated total CH4 (kg)emissions during the gestation period, were similar between conventional weaned (CW;37.86 ± 0.506 kg) and early weaned (EW; 37.47 ± 0.476 kg) cows. However, averagedover two lactations, total CH4 emissions were larger (p < 0.0001) in CW cows (38.67± 0.456 kg) than in their EW (14.40 ± 0.435 kg) counterparts. Total gas emissionsfrom birth to comparable commercial yearlings age were higher (p < 0.0001) for CW(43.11 ± 0.498 kg) calves than for EW (40.27 ± 0.472 kg) calves. It was concluded thatmid and long-term pastoral datasets and new concerns are well suited to understanddifferent contexts and adaptations to the contemporary weather conditions. Nevertheless,conventional farming systems will be less environmentally vulnerable if EWmanagement practices involve the strategic and temporal use of improved pastures. Theroles of veterinary medicine and animal sciences are briefly discussed in the context ofunprecedented climate variability to provide a guide to the uncertain future.


2018 ◽  
Vol 42 (4) ◽  
pp. 513-529 ◽  
Author(s):  
Liliana Katinas ◽  
Jorge V Crisci

The challenge of increasing food production to keep pace with demand, while retaining the essential ecological integrity of production systems, requires coordinated action among science disciplines. Thus, 21st-century Agriculture should incorporate disciplines related to natural resources, environmental science, and life sciences. Biogeography, as one of those disciplines, provides a unique contribution because it can generate research ideas and methods that can be used to ameliorate this challenge, with the concept of relative space providing the conceptual and analytical framework within which data can be integrated, related, and structured into a whole. A new branch of Biogeography, Agriculture Biogeography, is proposed here and defined as the application of the principles, theories, and analyses of Biogeography to agricultural systems, including all human activities related to breeding or cultivation, mostly to provide goods and services. It not only encompasses the problem that land use seems scarcely to be compatible with biodiversity conservation, but also a substantial body of theory and analysis involving subjects not strictly related to conservation. Our aim is to define the field and scope of Agriculture Biogeography, set the foundations of a conceptual framework of the discipline, and present some subjects related to Agriculture Biogeography. We present, in summary form, a concept map which summarizes the relationship between agriculture systems and Biogeography, and delineates the current engagement between Agriculture and Biogeography through the discussion of some perspectives from Biogeography and from the agriculture research.


2021 ◽  
Author(s):  
Evans Kituyi

Climate change is already impacting negatively on Africa’s agriculture and threatens to significantly reverse the gains realized in food security as the 1.5 degC warming threshold set by the Paris Agreement fast approaches. This is happening at a time when a wide range of tested and viable technologies, innovations and best practices exist with the potential to scale up climate resilient food production across the region’s diverse agricultural systems. A framework and modalities are proposed to support stakeholders in identifying and scaling up appropriate technologies, innovations and best practices for climate-resilient food production in different farming systems. These provide a much needed solution for Africa’s policymakers who are currently grappling with options to meet their citizens’ food security today even as they ponder over how they will feed their rapidly growing populations, expected to reach 2 billion by 2030 under worsened climate conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 366
Author(s):  
Hubert Žarnovičan ◽  
Jozef Kollár ◽  
Vladimír Falťan ◽  
František Petrovič ◽  
Marian Gábor

In Slovakia, traditional orchards, like other European rural landscapes and their agricultural systems, are at long-term risk from changes in land use and management. We focused on this issue in the Nová Baňa dispersed settlement region (central Slovakia), which contains numerous traditional orchards. Management changes over the period 1949–2017 were evaluated on the basis of structured interviews conducted with the owners of 63 traditional orchards. Management measures were evaluated separately for 1949, 1970, 1991, 2000, 2007 and 2017. These data were supplemented by data on land cover over time, with an emphasis on orchards, evaluated for the years 1949, 1976, 1991 and 2017 using historical orthophoto maps. Traditional orchard management included mowing, grazing, plowing, fertilizing, and litter raking. By 2017, the management regime had changed in 92% of orchards. The use of plowing and grazing in orchards decreased, and the use of mulching has increased since 2000. From 1949 to 2017, the number of identifiable management regimes doubled; regimes consisting of a single management measure appeared, while regimes of multiple management measures decreased in frequency. Between 1949 and 2017, there was a total decrease of 38.36% in the area of traditional orchards; 31.62% of orchards remained unchanged. The largest decrease was caused by orchard conversion into grasslands (18.93%), forests (13.81%), shrubs (9.42%) and urbanized areas (8.87%).


Author(s):  
C.D.A. Brown ◽  
K.F. Thompson

Ostrich are currently being promoted as an alternative to sheep, cattle and deer. Although current bird prices are not sustainable, New Zealand and overseas experience to date suggest ostrich can be farmed successfully and profitability long term. Climate and terrain of the east coast of New Zealand suit ostrich physical requirements. It has been suggested that production systems will develop in which grazed herbage will provide 60% or more of the nutritional requirements. The ability to graze low-cost herbage combined with a reproduction rate of about 25 progeny per hen per year indicate that ostrich production systems may be three times more efficient than beef or deer at turning feed into lean meat. The low fat and low cholesterol meat is likely to be the primary product and is already being sold in international markets. There is also a market for the leather, feathers and oil by-products. Keywords: diversification, east coast, farming systems, meat, ostrich


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1862
Author(s):  
Dario Pedolin ◽  
Johan Six ◽  
Thomas Nemecek

Food production systems can contribute to the degradation of the environment; thereby endangering the very resource, they depend on. However, while overall large, the environmental impacts of individual agricultural products are disparate. Therefore, in order to gain a better understanding of the impact different food production systems have on the environment, we should start at the produce level. In this study, we combine life cycle assessment (LCA) methodology and data envelopment analysis to calculate environmental efficiency scores (i.e., agricultural output divided by environmental impacts) for eight product groups (Milk, Cattle, Pig fattening, Cereals, Beets, Potatoes, Vegetables, Fruits) in Switzerland. First, LCA is used to calculate “cradle to farm-gate” environmental impacts. These impacts are then used as inputs in a data envelopment analysis, with the amount of produced agricultural products as outputs. The resulting environmental efficiency scores reflect the relative efficiency (i.e., related to the best-observed performance) of the observed product groups. We find large differences in environmental impacts and environmental efficiency score distribution between the product groups. While we find some variability of environmental efficiency between farming systems (Organic and Proof of Ecological Performance) within a product group (difference in coefficient of variation between farming systems: Fruits = 48%, Vegetables = 13%, Cereals, Potatoes = 8%), we did not find any significant differences in environmental efficiency between organic and integrated farming systems for any of the considered product groups. Furthermore, we did not find a negative effect of multifunctionality of Swiss farms (i.e., multiple simultaneously produced product groups), but found a small positive effect for Milk in the presence of other product groups. However, the high within product group variance of environmental efficiency suggests the potential for improvements (notably >40% for Fruits and >30% for Cattle and Potatoes).


2022 ◽  
pp. 206-214
Author(s):  
Johann A. Strauss

Abstract Over the past 15 years the adoption rate of Conservation Agriculture (CA) in southern South Africa has increased at a fast rate, although the adoption of the three pillars of CA was to varying degrees. The adoption of CA happened in the absence of any policy support framework directed to CA. The market drove the adaptation rate with a handful of local producers being the first to adopt no-till (NT) strategies. Long-term field experiments demonstrate that the effects of crop rotation include increased yields from the main wheat crop so that two-thirds of the present total wheat production may be achieved with only half the cropped area under the main crop, and gross margins are better - and dramatically better - with integration of cropping and livestock. This chapter presents an overview of the benefits to yield and economic sustainability of including alternative cash and pasture crops into CA farming systems in the winter rainfall region of southern South Africa.


2002 ◽  
Vol 12 (3) ◽  
pp. 362-368 ◽  
Author(s):  
J.P. Mueller ◽  
M. E. Barbercheck ◽  
M. Bell ◽  
C. Brownie ◽  
N.G. Creamer ◽  
...  

The Center for Environmental Farming Systems (CEFS) is dedicated to farming systems that are environmentally, economically, and socially sustainable. Established in 1994 at the North Carolina Department of Agriculture and Consumer Services (NCDACS) Cherry Farm near Goldsboro, N.C.; CEFS operations extend over a land area of about 800 ha (2000 acres) [400 ha (1000 acres) cleared]. This unique center is a partnership among North Carolina State University (NCSU), North Carolina Agriculture and Technical State University (NCATSU), NCDACS, nongovernmental organizations (NGOs), other state and federal agencies, farmers and citizens. Long-term approaches that integrate the broad range of factors involved in agricultural systems are the focus of the Farming Systems Research Unit. The goal is to provide the empirical framework to address landscape-scale issues that impact long-run sustainability of North Carolina's agriculture. To this end, data collection and analyses include soil parameters (biological, chemical, physical), pests and predators (weeds, insects and disease), crop factors (growth, yield, and quality), economic factors, and energy issues. Five systems are being compared: a successional ecosystem, a plantation forestry-woodlot, an integrated crop-animal production system, an organic production system, and a cash-grain [best management practice (BMP)] cropping system. An interdisciplinary team of scientistsfrom the College of Agriculture and Life Sciences at NCSU and NCATSU, along with individuals from the NCDACS, NGO representatives, and farmers are collaborating in this endeavor. Experimental design and protocol are discussed, in addition to challenges and opportunities in designing and implementing long-term farming systems trials.


2020 ◽  
Vol 9 (4) ◽  
pp. e04942784
Author(s):  
Andrea Aline Mombach ◽  
Carla Grasiele Zanin Hegel ◽  
Rogério Luis Cansian ◽  
Sônia Beatris Balvedi Zakrzevski

The perception of a basic education of the importance of agroecological agricultural systems for human and environmental health is fundamental for changes in consumption habits, the conservation of local biodiversity and long-term social transformation. We analyzed, by utilizing a questionnaire consisting of open and closed questions, the perceptions about agroecological and conventional agricultural production systems in 360 final students of basic education residing in nine Functional Planning Regions of southern Brazil. We used classification categories for answers within thematic axes, expressed in percentages and analyzed by means of Chi-square and Kruskal-Wallis tests. In general, students recognize agroecological systems as healthier for their families and for soil and water conservation, largely because they do not use agrochemicals. However, they demonstrated difficulties when arguing their importance for the conservation of biodiversity, ecosystems and for ensuring the food security of populations. Television was the main source of information related to agroecology, mainly for students residing in rural areas, thus pointing out shortcomings in basic education regarding the approach of the theme in schools. Our results show the need to build a complex network of knowledge and discussions on agroecological agricultural systems in basic education, involving changes in student perceptions, behaviors and sustainable choices.


Sign in / Sign up

Export Citation Format

Share Document