scholarly journals Incidence of operative parameters in the production of biohydrogen generated from urban organic waste

2019 ◽  
Vol 72 (2) ◽  
pp. 8841-8853
Author(s):  
Edilson León Moreno-Cárdenas ◽  
Deisy Yuliana Cano Quintero

Organic waste is considered a substrate of great interest to produce biohydrogen. In the present work, the influence of some physical and chemical parameters in the operation of a bioreactor for biohydrogen generation were studied, taking as a substrate organic residue from a wholesale food market without adding inoculum. Therefore, an experimental design of central composition was made, with four factors and two levels. The dependent variables were maximum hydrogen content (% of H2), daily production of hydrogen (L H2 d-1) and its cumulative production (L H2). The independent variables were operation pH (pHo), pH of acidification (pHa), the duration time of the acidification stage, and stirring. A numerical optimization was carried out, allowing the prioritization of the factors, and maximizing the response variables. Resulting in a yield of up to 14.9 L H2 d-1, a hydrogen content of 49.2% and a cumulative production of 21.6 L H2, for pHa values of 4.9; pHo between 6 and 6.1; acidification time of 2 d and stirring of 41.4 rpm. Likewise, a graphical optimization was carried out, reaching 14.9 L H2 d-1, a hydrogen content of 44.2% and an accumulated 22.8 L H2, for pHa values between 4.5 and 4.95; pHo between 5.6 and 6.3; acidification time of 2 d, and stirring of 37.1 rpm. Maximum yields were 1.9 L H2 Lwaste.day-1, 4800 mL H2 gCOD-1, and 608.6 mL H2 gTVSadded-1, values similar to those reported by other authors using organic waste in the production of hydrogen, using inoculum.

2015 ◽  
Vol 29 (3) ◽  
pp. 313-321 ◽  
Author(s):  
Justyna Lalak ◽  
Agnieszka Kasprzycka ◽  
Ewelina M. Paprota ◽  
Jerzy Tys ◽  
Aleksandra Murat

AbstractThe aim of the study was to assess the potential of organic wastes from the agriculture and food industry as co-substrate for biogas production, on the basis of physical and chemical parameters analysis and biogas yield in the process of methane fermentation. The experimental material consisted of carrot pomace, kale by-products and maize silage. Methane fermentation was conducted in bioreactors equipped with an automatic control and measurement system. The study indicated correct physicochemical properties in terms of high content of dry organic matter and also correct C/N ratio. That was reflected in high biogas yields which amounted to, respectively, 558 N dm3kg−1VS−1for carrot pomace and kale by-products, and 526 N dm3kg−1VS−1for maize silage. The study showed that the intensity of biogas production was varied and depended on the composition of fermented mixtures. Methane fermentation of organic waste mixtures significantly increased the amount of biogas efficiency compared to the fermentation of individual substrates. The successful run of the experiment indicates that a mixture composed of carrot pomace and kale by-products is a good substrate for the production of biogas.


2018 ◽  
Vol 6 (10) ◽  
pp. 123-130
Author(s):  
Yaroslava Zhukova ◽  
◽  
Pylyp Petrov ◽  
Olena Boloba ◽  
Tetiana Ohrimenko ◽  
...  

2000 ◽  
Vol 31 (4-5) ◽  
pp. 411-422 ◽  
Author(s):  
Gísli Már Gíslason ◽  
Jón S. Ólafsson ◽  
Hákon Adalsteinsson

The characteristics of stream and river ecosystems in arctic and alpine areas are determined mainly by the relative contribution of glacial meltwater, snowmelt, rainfall and groundwater. Each source generates a particular seasonal hydrological signature, affecting physical and chemical properties, and hence biological communities. The relative contribution of each source is sensitive to climate change. The study was concentrated on the glacial River W-Jökulsá and some non-glacial rivers in the central highlands of Iceland. The water in the glacial river was entirely glacial meltwater at the glacier margin, but the glacial contribution was about 20% 40 km downstream. However, its tributaries and non-glacial reference rivers were mainly springfed. The invertebrate fauna was confined to Chironomidae of the genus Diamesa close to the glacier, but other taxa (species and groups of species) occupied the river further downstream, where their diversity was close to that found in the reference rivers.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 221
Author(s):  
Rafał Tytus Bray ◽  
Katarzyna Jankowska ◽  
Eliza Kulbat ◽  
Aneta Łuczkiewicz ◽  
Aleksandra Sokołowska

The paper presents the results of research on the use of ultrafiltration, using membranes of 200 and 400 kDa separation, for disinfection of municipal treated wastewater. The research was conducted on a fractional technical scale using real municipal treated wastewater from two large wastewater treatment plants treating most of the wastewater over the one-million polycentric Gdańsk agglomeration (1.2 million inhabitants). UF 200 kDa and UF 400 kDa processes enabled further improvement of the physical and chemical parameters of treated wastewater. Total phosphorus (to below 0.2 mg/L–UF 200 kDa, 0.13 mg/L–UF 400 kDa) and turbid substances (to below 0.2 mg/L, both membranes) were removed in the highest degree. COD was reduced efficiently (to below 25.6 mgO2/L–UF 200 kDa, 26.8 mgO2/L–UF 400 kDa), while total nitrogen was removed to a small extent (to 7.12 mg/L–UF 200 kDa and 5.7 mg/L–UF 400 kDa. Based on the reduction of indicator bacteria; fecal coliforms including E. coli (FC) and fecal enterococci (FE) it was found that the ultrafiltration is an effective method of disinfection. Not much indicator bacterial were observed in the permeate after processes (UF 200 kDa; FC—5 CFU/L; FE—1 CFU/L and UF 400 kDa; FC—70 CFU/L; FE—10 CFU/L. However, microscopic analysis of prokaryotic cells and virus particles showed their presence after the application of both membrane types; TCN 3.0 × 102 cells/mL–UF 200 kDa, 5.0 × 103 cells/mL–UF 400 kDa, VP 1.0 × 105/mL. The presence of potentially pathogenic, highly infectious virus particles means that ultrafiltration cannot be considered a sufficient disinfection method for treated wastewater diverted for reuse or discharged from high load wastewater treatment plants to recreational areas. For full microbiological safety it would be advisable to apply an additional disinfection method (e.g., ozonation).


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 49
Author(s):  
Markéta Šourková ◽  
Dana Adamcová ◽  
Jan Winkler ◽  
Magdalena Daria Vaverková

Illegal dumps and landfills with disposed of tires are a fact of today, which should not be neglected as they represent a great ecological burden for the environment, affect the surrounding nature and disturb the landscape. This research was focused on testing the phytotoxicity of aqueous leachates from the fractions of tires in two sets of experiments—to simulate laboratory conditions (tire leaching in distilled water) and natural conditions (tire leaching in water from a recipient) using the Phytotoxkit testing kit (kit for the establishment of inhibition/stimulation effect on the root development) and the watercress test of phytotoxicity (biological method for the assessment of leachate phytotoxicity). Plants whose seeds were selected for the test were watercress (Lepidium sativum L.) and white mustard (Sinapis alba L.). The aqueous leachate was tested for 38 weeks. During the experiment, physical and chemical parameters were measured at intervals of 14 days by the testing instrument HACH TEST KIT: electric conductivity (EC), amount of dissolved oxygen (LDO) and pH. Results of root growth inhibition (IR) on the seeds of Lepidium sativum L. and Sinapis alba L. exhibited values ranging from 11.73% to 47.74% in the tested samples. Results of germination index (GI) on the seeds of Lepidium sativum L. exhibited values below 66% in the tested samples, which indicated the leachate phytotoxicity. In spite of the fact that similar studies are tackling the acute toxicity of leachates from tires (particularly to algae, embryos and animals), this research brings complementary information in testing the acute phytotoxicity of tire leachates to higher plants.


2020 ◽  
Vol 10 (2) ◽  
pp. 335-346
Author(s):  
Arnold Landry Fotseu Kouam ◽  
Gideon Aghaindum Ajeagah

Abstract The aim of this study is to determine the effectiveness of disinfectant on the viability of eggs from three nematode species (Ascaris, Trichuris, Ankylostoma). It was conducted in a microcosm from June 2018 to June 2019. The wastewater scan was sampled using 5 L sterile containers, the sample was arranged in four replicas, three tests and one control. The test samples received three disinfectants (Moringa, calcium hypochlorite and Moringa associated with calcium hypochlorite) at varying concentrations. The physical and chemical parameters were measured before and after the application of each disinfectant. The samples were then observed under an optical microscope. The viability of the eggs was determined by incubating the Petri dish samples at 30 °C for 30 days. The analyses show that some physicochemical parameters can significantly influence the efficacy of disinfectant on the eggs. The calcium hypochlorite associated with Moringa at 0.6 g/L showed greater efficacy on reducing viability and inactivation of eggs with 100% efficacy yield rates on Ankylostoma and Trichuris trichiuria and 97% on Ascaris lumbricoides eggs; this efficacy is significantly different from that observed on samples treated with Moringa and simple calcium hypochlorite. Of the three parasites tested, A. lumbricoides showed greater resistance to the disinfectant.


Sign in / Sign up

Export Citation Format

Share Document