scholarly journals Morphological and molecular characterization of the toxic dinoflagellate Ostreopsis cf. ovata (Dinophyta) from Brazil (South Atlantic Ocean)

2017 ◽  
Vol 65 (3) ◽  
pp. 1022 ◽  
Author(s):  
Fernando Gómez ◽  
Dajun Qiu ◽  
Rubens M. Lopes ◽  
Senjie Lin

Ostreopsis cf. ovata is a toxic epiphytic dinoflagellate widely distributed in warm waters that often co-occur with species of the genera Coolia, Fukuyoa, Gambierdiscus and Prorocentrum. We investigated a strain isolated from the coast of Ubatuba, Brazil (South-West Atlantic Ocean) by light and epifluorescence microscopies; we also report molecular data based on the LSU rDNA and ITS markers. Cells were 35-65 µm in the dorso-ventral diameter and 20-40 µm wide. We obtained the sequence of a ~1900 base pair region of the rRNA gene cistron. In the LSU rDNA phylogeny, the sequences under the names O. ovata and O. cf. ovata branched into three clades. The ITS marker showed greater resolving power and the sequences of O. ovata/O. cf. ovata split into five clades. Our ITS sequence branched in a clade with sequences of strains from the Mediterranean Sea, European Atlantic coasts, subtropical NE Atlantic, other sequences from Brazil at Rio de Janeiro, and a few sequences from Japan. The cell dimensions and thecal plate arrangement were under the variability range reported in other ocean regions. Our observations confirm O. cf. ovata as the most commonly recorded species of Ostreopsis in the SW Atlantic Ocean. Ostreopsis cf. ovata co-occurred with Coolia malayensis in Brazil and Asia, but it has been commonly reported from the Mediterranean Sea, where C. malayensis has not yet been recorded; while Coolia malayensis has been reported from the Caribbean Sea, but not O. ovata. With the current knowledge, it is difficult to understand the factors that determine the biogeography of the tropical epiphytic dinoflagellates. 

2020 ◽  
Vol 63 (6) ◽  
pp. 527-535
Author(s):  
Donatella Serio ◽  
Giovanni Furnari ◽  
Yola Metti

AbstractIt was noted that Mediterranean specimens collected at different stations from around Sicily, Italy and referred to as Laurencia dendroidea (as Laurencia majuscula) were similar to the recently described species Laurenciella marilzae. Presented in this study are the results of an integrative approach using both morphology and molecular data (COI-5P + rbcL) to establish which taxon these specimens should be referred to. Molecular analyses show these specimens belong to Laurenciella, and strongly suggest they are within the species L. marilzae. Morphological examinations of these Mediterranean specimens were also detailed and found to support the conclusion that they belong to L. marilzae.


2007 ◽  
Vol 37 (2) ◽  
pp. 338-358 ◽  
Author(s):  
Ichiro Fukumori ◽  
Dimitris Menemenlis ◽  
Tong Lee

Abstract A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.


2017 ◽  
Vol 13 (8) ◽  
pp. 854-861 ◽  
Author(s):  
Joanna Pilczynska ◽  
Silvia Cocito ◽  
Joana Boavida ◽  
Ester A. Serrão ◽  
Henrique Queiroga

2018 ◽  
Vol 48 (2) ◽  
pp. 156-163
Author(s):  
Maria Holzmann ◽  
Sylvain Rigaud ◽  
Shahrouz Amini ◽  
Ivan Voltski ◽  
Jan Pawlowski

Abstract Textulariid foraminifera are characterized by a multichambered test with an agglutinated wall structure. Recent molecular work has shown that the order Textulariida appears as a paraphyletic group within the class Globothalamea. While larger members of the textulariids are fairly well known, smaller forms like the ones described here are often overlooked or synonymized with known species. A new species and genus was isolated from algal samples collected on the French coast of the Mediterranean Sea. Cyrea szymborska gen. and sp. nov., has a trochospiral chamber arrangement, measuring 100–210 µm in diameter. The organic wall is brownish, opaque, and sparsely agglutinated with diatom frustules and mineral grains, mostly 20 µm or smaller in size. The proloculus is not agglutinated. The extra-umbilical aperture forms a low arch. It is smooth, not agglutinated, and located on the last chamber. The biochemistry of the organic wall was investigated using Raman spectroscopy, showing that it is made of a meshwork of proteoglycans. A combined analysis of SSU and LSU rDNA sequences confirms the position of Cyrea among textulariids, distantly from all other genera. Molecular analyses revealed two phylotypes belonging to the new genus, one of which is formally described here.


ZooKeys ◽  
2018 ◽  
Vol 771 ◽  
pp. 15-40 ◽  
Author(s):  
Hiroshi Yamasaki ◽  
Katarzyna Grzelak ◽  
Martin V. Sørensen ◽  
Birger Neuhaus ◽  
Kai Horst George

Kinorhynchs rarely show a wide distribution pattern, due to their putatively low dispersal capabilities and/or limited sampling efforts. In this study, a new kinorhynch species is described,Echinoderespterussp. n., which shows a geographically and bathymetrically wide distribution, occurring on the Karasik Seamount and off the Svalbard Islands (Arctic Ocean), on the Sedlo Seamount (northeast Atlantic Ocean), and on the deep-sea floor off Crete and on the Anaximenes Seamount (Mediterranean Sea), at a depth range of 675–4,403 m. The new species is characterized by a combination of middorsal acicular spines on segments 4–8, laterodorsal tubes on segment 10, lateroventral tubes on segment 5, lateroventral acicular spines on segments 6–9, tufts of long hairs rising from slits in a laterodorsal position on segment 9, truncated tergal extensions on segment 11, and the absence of any type-2 gland cell outlet. The specimens belonging to the populations from the Arctic Ocean, the Sedlo Seamount, and the Mediterranean Sea show morphological variation in the thickness and length of the spines as well as in the presence/absence of ventromedial sensory spots on segment 7. The different populations are regarded as belonging to a single species because of their overlapping variable characters.


1982 ◽  
Vol 19 (7) ◽  
pp. 1507-1517 ◽  
Author(s):  
Michel Menvielle ◽  
Jean-Claude Rossignol

Anomalous transient variations of the geomagnetic field in northern Morocco and southern Spain have been described previously for periods ranging from 10 min to 2 h. These results have been reinvestigated with regard to their tectonic implications.The main result obtained is evidence for a conductive structure that electrically connects the Atlantic Ocean to the Mediterranean Sea. This conductive structure coincides with a zone of fractures, extending over several hundreds of kilometres and deeply penetrating the crust, that may form the southeastern boundary of the Alboran block.We also show that the deviation and channeling of electric currents by lateral contrasts of conductivity may account for most of the features of the observed anomalous field in southern Spain and northern Morocco.


2009 ◽  
Vol 6 (4) ◽  
pp. 647-662 ◽  
Author(s):  
I. E. Huertas ◽  
A. F. Ríos ◽  
J. García-Lafuente ◽  
A. Makaoui ◽  
S. Rodríguez-Gálvez ◽  
...  

Abstract. The exchange of both anthropogenic and natural inorganic carbon between the Atlantic Ocean and the Mediterranean Sea through Strait of Gibraltar was studied for a period of two years under the frame of the CARBOOCEAN project. A comprehensive sampling program was conducted, which was design to collect samples at eight fixed stations located in the Strait in successive cruises periodically distributed through the year in order to ensure a good spatial and temporal coverage. As a result of this monitoring, a time series namely GIFT (GIbraltar Fixed Time series) has been established, allowing the generation of an extensive data set of the carbon system parameters in the area. Data acquired during the development of nine campaigns were analyzed in this work. Total inorganic carbon concentration (CT) was calculated from alkalinity-pHT pairs and appropriate thermodynamic relationships, with the concentration of anthropogenic carbon (CANT) being also computed using two methods, the ΔC* and the TrOCA approach. Applying a two-layer model of water mass exchange through the Strait and using a value of −0.85 Sv for the average transport of the outflowing Mediterranean water recorded in situ during the considered period, a net export of inorganic carbon from the Mediterranean Sea to the Atlantic was obtained, which amounted to 25±0.6 Tg C yr−1. A net alkalinity output of 16±0.6 Tg C yr−1 was also observed to occur through the Strait. In contrast, the Atlantic water was found to contain a higher concentration of anthropogenic carbon than the Mediterranean water, resulting in a net flux of CANT towards the Mediterranean basin of 4.20±0.04 Tg C yr−1 by using the ΔC* method, which constituted the most adequate approach for this environment. A carbon balance in the Mediterranean was assessed and fluxes through the Strait are discussed in relation to the highly diverse estimates available in the literature for the area and the different approaches considered for CANT estimation. This work unequivocally confirms the relevant role of the Strait of Gibraltar as a controlling point for the biogeochemical exchanges occurring between the Mediterranean Sea and the Atlantic Ocean and emphasizes the influence of the Mediterranean basin in the carbon inventories of the North Atlantic.


2003 ◽  
Vol 37 ◽  
pp. 73-84 ◽  
Author(s):  
Katarina Gårdfeldt ◽  
Jonas Sommar ◽  
Romano Ferrara ◽  
Claudia Ceccarini ◽  
Enrica Lanzillotta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document