scholarly journals THE EFFECT OF NITROGEN FERTILISERS ON THE GRAIN YIELD OF DIFFERENT CULTIVARS OF WINTER WHEAT

Author(s):  
Ilona VAGUSEVIČIENĖ ◽  
Aistė JUCHNEVIČIENĖ

The article deals with the effect of nitrogen fertilizer on the yield of different cultivars of winter wheat. Field experiments were conducted in 2011–2013 at the Experimental Station of Aleksandras Stulginskis University in carbonate shallow gleyic leached soil, (Calc(ar)i-Epihypogleyic Luvisol). The object of the investigation was winter wheat cultivars ‘Zentos’ and ‘Ada’. In sowing time the wheat was treated with granular superphosphate (P60) and potassium chloride (K60), and in spring, after the vegetative growth had resumed, in tillering time (BBCH 23–15) with ammonium nitrate (N60). Additionally, foliar fertilizer urea solution was used: N30, N40 at booting stage (BBCH 34–36) and N15, N30 at milk ripening stage (BBCH 71–74). It has been established that application of nitrogen fertilizer at booting and milk ripening stages increased the yield of wheat cultivars ‘Zentos’ and ‘Ada’ (0.06–1.74 and 0.41–1.74 t ha–1). The correlation and regression analysis confirmed that wheat grain yield statistically significantly correlated with nitrogen fertilizer application rates. The correlative relationships were very strong (r = 0.983 and r = 0.987). Irrespective of additional fertilization, genetic properties of the cultivars also had influence on the yield.

Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


1989 ◽  
Vol 3 (1) ◽  
pp. 67-71 ◽  
Author(s):  
Jill Schroeder ◽  
Philip A. Banks

Soft red winter wheat cultivars were evaluated in field experiments in Georgia for tolerance to dicamba alone and mixed with 2,4-D. Treatments reduced ‘Florida 302’ yield more than ‘Florida 301’ or ‘Coker 983’ at Tifton in 1986. Mid-tillering Florida 302 wheat was more sensitive to treatment than fully tillered wheat. In 1987, dicamba plus 2,4-D applied at mid-tillering reduced yields of all cultivars in Watkinsville. Injury and yield reductions occurred primarily when mid-tiller treatments were applied to wheat that was planted 10 or 21 days later than recommended at Tifton or Watkinsville, respectively. When applied according to labeling, dicamba or dicamba plus 2,4-D use in Georgia soft red winter wheat can reduce grain yield.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1108 ◽  
Author(s):  
Jiayi Zhang ◽  
Xia Liu ◽  
Yan Liang ◽  
Qiang Cao ◽  
Yongchao Tian ◽  
...  

Rapid and effective acquisition of crop growth information is a crucial step of precision agriculture for making in-season management decisions. Active canopy sensor GreenSeeker (Trimble Navigation Limited, Sunnyvale, CA, USA) is a portable device commonly used for non-destructively obtaining crop growth information. This study intended to expand the applicability of GreenSeeker in monitoring growth status and predicting grain yield of winter wheat (Triticum aestivum L.). Four field experiments with multiple wheat cultivars and N treatments were conducted during 2013–2015 for obtaining canopy normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) synchronized with four agronomic parameters: leaf area index (LAI), leaf dry matter (LDM), leaf nitrogen concentration (LNC), and leaf nitrogen accumulation (LNA). Duration models based on NDVI and RVI were developed to monitor these parameters, which indicated that NDVI and RVI explained 80%, 68–70%, 10–12%, and 67–73% of the variability in LAI, LDM, LNC and LNA, respectively. According to the validation results, the relative root mean square error (RRMSE) were all <0.24 and the relative error (RE) were all <23%. Considering the variation among different wheat cultivars, the newly normalized vegetation indices rNDVI (NDVI vs. the NDVI for the highest N rate) and rRVI (RVI vs. the RVI for the highest N rate) were calculated to predict the relative grain yield (RY, the yield vs. the yield for the highest N rate). rNDVI and rRVI explained 77–85% of the variability in RY, the RRMSEs were both <0.13 and the REs were both <6.3%. The result demonstrates the feasibility of monitoring growth parameters and predicting grain yield of winter wheat with portable GreenSeeker sensor.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11467
Author(s):  
Zhen Zhang ◽  
Zhenwen Yu ◽  
Yongli Zhang ◽  
Yu Shi

Background Exploring suitable split nitrogen management is essential for winter wheat production in the Huang-Huai-Hai Plain of China (HPC) under water-saving irrigation conditions, which can increase grain and protein yields by improving nitrogen translocation, metabolic enzyme activity and grain nitrogen accumulation. Methods Therefore, a 2-year field experiment was conducted to investigate these effects in HPC. Nitrogen fertilizer was applied at a constant total rate (240 kg/ha), split between the sowing and at winter wheat jointing growth stage in varying ratios, N1 (0% basal and 100% dressing fertilizer), N2 (30% basal and 70% dressing fertilizer), N3 (50% basal and 50% dressing fertilizer), N4 (70% basal and 30% dressing fertilizer), and N5 (100% basal and 0% dressing fertilizer). Results We found that the N3 treatment significantly increased nitrogen accumulation post-anthesis and nitrogen translocation to grains. In addition, this treatment significantly increased flag leaf free amino acid levels, and nitrate reductase and glutamine synthetase activities, as well as the accumulation rate, active accumulation period, and accumulation of 1000-grain nitrogen. These factors all contributed to high grain nitrogen accumulation. Finally, grain yield increase due to N3 ranging from 5.3% to 15.4% and protein yield from 13.7% to 31.6%. The grain and protein yields were significantly and positively correlated with nitrogen transport parameters, nitrogen metabolic enzyme activity levels, grain nitrogen filling parameters. Conclusions Therefore, the use of split nitrogen fertilizer application at a ratio of 50%:50% basal-topdressing is recommended for supporting high grain protein levels and strong nitrogen translocation, in pursuit of high-quality grain yield.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhen Zhang ◽  
Zhenwen Yu ◽  
Yongli Zhang ◽  
Yu Shi

AbstractA water-saving cultivation technique of supplementary irrigation based on soil moisture levels has been adopted for winter wheat production in the Huang-Huai-Hai Plain of China, due to the enhanced water-use efficiency. However, appropriate split nitrogen management may further improve crop growth and grain yield. Here, we conducted a 2-year field experiment to determine if split nitrogen management might improve wheat productivity by enhancing 13C photosynthate mobilization and the antioxidant defense system under water-saving conditions. Split nitrogen management involved a constant total nitrogen rate (240 kg ha−1) split in four different proportions between sowing and jointing stage, i.e., 10:0 (N1), 7:3 (N2), 5:5 (N3), and 3:7 (N4). The N3 treatment significantly enhanced “soil-plant analysis development” values, superoxide dismutase antioxidant activity, soluble protein content, sucrose content, and sucrose phosphate synthetase activity, although it reduced the accumulation of malondialdehyde (MDA). The N3 treatment ultimately increased the amount of dry matter assimilation after anthesis significantly. In addition, the 13C isotope tracer experiment revealed that the N3 treatment promoted the assimilation of carbohydrates after anthesis and their partitioning to the developing grains. Compared to the unequal ratio treatments (N1, N2, and N4), the equal ratio treatment (N3) increased grain yield by 5.70–16.72% via increasing 1000-grain weight and number of grains per spike in both growing seasons. Therefore, we recommend the use of a 5:5 basal-topdressing split nitrogen fertilizer application under water-saving irrigation conditions to promote antioxidant enzyme activity and the remobilization of photosynthate after anthesis for improving wheat grain yield.


2011 ◽  
Vol 50 (No. 7) ◽  
pp. 309-314 ◽  
Author(s):  
L. Ducsay ◽  
O. Ložek

Small-plot field experiments were established in the first decade of October at the Plant Breeding Station of Sl&aacute;dkovičovo-Nov&yacute; dvor with winter wheat (Triticum aestivum L.), variety Astella. There was investigated an effect of topdressing with nitrogen on the yield of winter wheat grain and its quality characteristics in the experiment. Nitrogenous fertilizers were applied at the growth phase of the 6<sup>th</sup> leaf (Zadoks = 29). Soil of the experimental stand was analysed for inorganic nitrogen content (N<sub>an</sub>) down to the depth of 0.6 m of soil profile. Productive nitrogen fertilizing rate was computed to ensure N<sub>an</sub> content in soil on the level of 120 and140 kg N/ha, respectively. Three various forms of fertilizers were examined, urea solution, ammonium nitrate with dolomite, and DAM-390. Different weather conditions statistically highly, significantly influenced grain yield in respective experimental years. Topdressing with nitrogen caused a statistically highly significant increase of grain yield in all fertilized variants ranging from +0.35 to +0.82 t/ha according to respective treatments. Average grain yield in unfertilised control variant represented 7.23 t/ha. Nitrogen nutrition showed a positive effect on the main macroelements offtake (N, P, K, Ca, Mg, S) by winter wheat grain in all fertilized variants. Nitrogen fertilizing to the level of 140 kg/ha N in soil positively influenced formation of wet gluten and crude protein with highest increment in variant 5 (solution of urea) representing +12.8 and +10.7%, respectively in comparison to control unfertilised variant as well as to variant 2 (solution of urea and fertilizing on the level of120&nbsp;kg N/ha) where increments represented +8.8 and 9.7%, respectively. Thousand-kernel weight, volume weight and portion of the first class grain were not markedly influenced by nitrogen fertilizing.


2004 ◽  
Vol 84 (1) ◽  
pp. 125-131 ◽  
Author(s):  
A. B. Middleton ◽  
E. Bremer ◽  
R. H. McKenzie

The recommended method for N fertilization to winter wheat (Triticum aestivum L.) on the Canadian prairies has been to broadcast ammonium nitrate (AN) during early spring. In the Chinook region of southern Alberta, considerable interest exists in alternative formulations (particularly urea), times of application and placements. To determine the effect of alternative N fertilizer practices on winter wheat in southern Alberta, two field experiments were conducted over 2 consecutive years (1998-1999 and 1999-2000) at three locations. In the first experiment, fall applications of urea or coated urea, seed-placed or banded, were compared to the standard practice of spring-broadcast AN. At five of six sites, there was no difference between fall-banded urea and coated urea in plant stand, grain yield or protein concentrations when compared to spring-broadcast AN. In 1998-1999, fall-banded urea reduced grain yield by 13% at the site in the Brown soil. Seed-placed N was only safe for urea at 30 kg N ha-1 and for coated urea at rates up to 60 kg N ha-1. In the second experiment, urea and coated urea were broadcast in spring for comparison with AN. Coated urea was ineffective in dry years due to poor N release. Urea was equally effective as AN in this study, possibly due to the cool, dry conditions at the time of application and the relatively low surface soil pH levels at these reduced tillage sites. Further research will be required to confirm the effectiveness of this practice for this region. Key words: Ammonium nitrate, urea, coated urea, nitrogen fertilizer placement, nitrogen timing, grain protein


1990 ◽  
Vol 4 (4) ◽  
pp. 855-861 ◽  
Author(s):  
William H. Ahrens ◽  
E. Patrick Fuerst

Field experiments were conducted to determine wheat injury following clomazone application in soybeans and fallow in North Dakota. Clomazone at recommended rates generally caused 10% or less visible chlorosis in spring wheat planted 11 to 12 mo after application or winter wheat planted 11 mo after application, although greater chlorosis was observed in two of seven location/year environments. Tillage preceding wheat planting increased chlorosis from clomazone residues in some environments. Clomazone residues reduced wheat grain yield only in three of seven location/year environments and usually at application rates of 1.4 kg ai ha-1or greater. Severe drought prevailed during the study and probably increased clomazone persistence and wheat chlorosis. Drought also may have limited expression of grain yield reductions attributable to clomazone residues.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 154-158 ◽  
Author(s):  
R. S. Balyan ◽  
R. K. Malik ◽  
R. S. Panwar ◽  
S. Singh

Field experiments were conducted during the winters of 1986–87 and 1987–88 at Haryana Agricultural University, Hisar, India to classify the ability of winter wheat cultivars to compete with wild oat. Wild oat reduced winter wheat grain yield by 17 to 62% depending upon cultivar. WH-147 and HD-2285 were the most competitive cultivars. Winter wheat dry matter accumulation and grain yield were negatively correlated with wild oat dry matter. A high number of tillers, particularly in HD-2009, WH-291, and S-308, did not always translate into grain yield advantage in wild oat-infested plots. Wheat height and dry matter accumulation per unit area during early crop growth were better characters than number of tillers for predicting the competitive ability of wheat cultivars to wild oat.


Author(s):  
Ladislav Ducsay ◽  
Pavel Ryant

In the years 1999 to 2001 in conditions of small-plot field experiments was carried out on loamy degraded chernozems at the Plant Breeding Station of Sládkovičovo-Nový Dvor to solve the problems of topdressing winter wheat (Triticum aestivum, L.), variety Astella, with different forms of nitrogenous fertilizers. Nitrogenous fertilizers were applied at the growth phase of the 6th leaf (Zadoks = 29). Four various forms of fertilizers were exemined: urea solution, DAM-390, DAM-390 + Dumag, DASA. Different weather conditions statistically highly significantly influenced grain yield in respective experimental years. Topdressing with nitrogen (30 kg N.ha–1) caused statistically highly significant increase of grain yield in all fertilized variants ranging from +0.29 t.ha–1 (applied of DAM-390) to +0.69 t.ha–1 (applied of DASA) according to respective treatments. Average grain yield in unfertilized control variant represented 7.23 t.ha–1. Nitrogen nutrition showed positive effect on the main macroelements offtake (N, P, K, Ca, Mg, S) by winter wheat grain in all fertilized variants. Nitrogen fertilizing positively influenced formation of wet gluten and crude protein with highest increment in variant with DASA and variant with DAM-390 + Dumag.


Sign in / Sign up

Export Citation Format

Share Document