Carryover Injury of Clomazone Applied in Soybeans (Glycine max) and Fallow

1990 ◽  
Vol 4 (4) ◽  
pp. 855-861 ◽  
Author(s):  
William H. Ahrens ◽  
E. Patrick Fuerst

Field experiments were conducted to determine wheat injury following clomazone application in soybeans and fallow in North Dakota. Clomazone at recommended rates generally caused 10% or less visible chlorosis in spring wheat planted 11 to 12 mo after application or winter wheat planted 11 mo after application, although greater chlorosis was observed in two of seven location/year environments. Tillage preceding wheat planting increased chlorosis from clomazone residues in some environments. Clomazone residues reduced wheat grain yield only in three of seven location/year environments and usually at application rates of 1.4 kg ai ha-1or greater. Severe drought prevailed during the study and probably increased clomazone persistence and wheat chlorosis. Drought also may have limited expression of grain yield reductions attributable to clomazone residues.

2011 ◽  
Vol 64 (1) ◽  
pp. 3-13 ◽  
Author(s):  
J. Czaban ◽  
B. Wróblewska ◽  
A. Sułek ◽  
G. Podolska

Colonization of wheat grain by Fusaria in two crop management systems varying in intensity of production technology The purpose of this study was to investigate the effects of two cropping systems (intensive and integrated) on infection level of winter and spring wheat kernels by Fusarium species. Field experiments were conducted with winter wheat ‘Tonacja’ and spring wheat ‘Bombona’ during two consecutive growing seasons (2007/2008 and 2008/2009 - winter wheat, and 2008 and 2009 - spring wheat). A rainfall level in 2009 from the last decade of May to the first decade of July was 2.5-times higher than that in 2008. After the harvest, kernels were surface disinfected with 1.5% NaOCl solution for 2 min and then analysed for the infection level by different species of Fusarium. Fusaria were isolated on CZID medium and identified on the basis of macro - and micro-morphology on three media (PDA, SNA and a medium containing tannin). Our results demonstrate that the wheat grain infection by Fusarium depended mainly on a rainfall level. The intensive cropping system was more conducive to the grain infection by fusaria in comparison to the integrated one. The most frequent species were F. avenaceum in 2008, and F. graminearum, F. avenaceum and F. poae in 2009.


Weed Science ◽  
1990 ◽  
Vol 38 (6) ◽  
pp. 532-535 ◽  
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper

Field experiments were conducted to determine the interaction of grazing and herbicide treatments on cheat control and biomass, wheat biomass, wheat grain yield, and wheat yield components. Ethyl-metribuzin at 1120 g ai ha−1and metribuzin at 420 g ai ha−1reduced cheat biomass 91 to 99 and 97 to 98%, respectively. Grazing had no effect on herbicide efficacy. Grazing increased cheat biomass in the check by 24% at only one location but did not affect total wheat plus cheat biomass. With one exception, controlled cheat was replaced by wheat on a 1:1 biomass basis when herbicides caused no crop injury. All herbicide treatments increased grain yield, but grazing did not alter yield. At two locations, increased heads m−2and spikelets/head accounted for most of the grain yield increases, but at one location seeds/spikelet and weight/seed were also increased. Harvest index was unaffected.


2011 ◽  
Vol 50 (No. 7) ◽  
pp. 309-314 ◽  
Author(s):  
L. Ducsay ◽  
O. Ložek

Small-plot field experiments were established in the first decade of October at the Plant Breeding Station of Sl&aacute;dkovičovo-Nov&yacute; dvor with winter wheat (Triticum aestivum L.), variety Astella. There was investigated an effect of topdressing with nitrogen on the yield of winter wheat grain and its quality characteristics in the experiment. Nitrogenous fertilizers were applied at the growth phase of the 6<sup>th</sup> leaf (Zadoks = 29). Soil of the experimental stand was analysed for inorganic nitrogen content (N<sub>an</sub>) down to the depth of 0.6 m of soil profile. Productive nitrogen fertilizing rate was computed to ensure N<sub>an</sub> content in soil on the level of 120 and140 kg N/ha, respectively. Three various forms of fertilizers were examined, urea solution, ammonium nitrate with dolomite, and DAM-390. Different weather conditions statistically highly, significantly influenced grain yield in respective experimental years. Topdressing with nitrogen caused a statistically highly significant increase of grain yield in all fertilized variants ranging from +0.35 to +0.82 t/ha according to respective treatments. Average grain yield in unfertilised control variant represented 7.23 t/ha. Nitrogen nutrition showed a positive effect on the main macroelements offtake (N, P, K, Ca, Mg, S) by winter wheat grain in all fertilized variants. Nitrogen fertilizing to the level of 140 kg/ha N in soil positively influenced formation of wet gluten and crude protein with highest increment in variant 5 (solution of urea) representing +12.8 and +10.7%, respectively in comparison to control unfertilised variant as well as to variant 2 (solution of urea and fertilizing on the level of120&nbsp;kg N/ha) where increments represented +8.8 and 9.7%, respectively. Thousand-kernel weight, volume weight and portion of the first class grain were not markedly influenced by nitrogen fertilizing.


1977 ◽  
Vol 49 (5) ◽  
pp. 406-414
Author(s):  
Antti Jaakkola

In a pot experiment the cadmium content of wheat grain grown on acid (pHCCaCl2 5.5) loam and clay soils was increased from 55 to 440-540 µg/kg by addition of 1 mg of cadmium per kg of soil. Raising of NPK fertilization increased the cadmium content of grain in general. The effect of liming varied. In field experiments the cadmium contents of wheat grain and straw were increased by cadmium addition on loam much more than on clay. Wheat grown on the loam suffered from severe drought. Cadmium application of 100 g/ha raised the cadmium contents in grain 10—60 and in straw 10—90 µg/kg. The contents were initially in the range 39—69 µg/kg. In an experiment in which fertilizers with various cadmium contents because of different raw materials were compared, not even the highest addition of cadmium, 49 g/ha, caused a significant change in the cadmium contents of grain or straw.


Weed Science ◽  
1986 ◽  
Vol 34 (5) ◽  
pp. 689-693 ◽  
Author(s):  
Challaiah ◽  
Orvin C. Burnside ◽  
Gail A. Wicks ◽  
Virgil A. Johnson

Field experiments were conducted to select winter wheat (Triticum aestivumL.) cultivar(s) that were competitive to downy brome (Bromus tectorumL. # BROTE). Downy brome significantly reduced winter wheat grain yields of all cultivars by 9 to 21% at Lincoln, while at North Platte yield reduction ranged from 20 to 41% depending upon cultivar. ‘Turkey’ was the most competitive cultivar to downy brome but it had the lowest grain yield. Compared to ‘Centurk 78’, ‘Centura’ at Lincoln and ‘SD 75284’ at North Platte proved to be significantly higher yielding and more competitive to downy brome. Winter wheat tiller number, canopy diameter, and plant height were negatively correlated with downy brome yield, but changes in these growth parameters did not always translate into grain yield advantage in downy brome-infested plots. Based on stepwise regression analysis, wheat height was better correlated with reduction in downy brome yield than were canopy diameter or number of tillers.


1996 ◽  
Vol 10 (3) ◽  
pp. 531-534 ◽  
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper ◽  
Eugene G. Krenzer

Field experiments were conducted to determine whether residual sulfonylurea herbicides applied at cheat suppression rates affect hard red winter wheat forage production and grain yield. Triasulfuron at 30 g/ha or chlorsulfuron plus metsulfuron at 26 g/ha applied PRE and metribuzin applied early POST alone at 280 g/ha or tank-mixed with triasulfuron at 158 + 30 g/ha or chlorsulfuron plus metsulfuron at 210 + 21 g/ha, all decreased total forage production of weed-free wheat. Conversely, all herbicide treatments except triasulfuron applied PRE increased wheat grain yield.


Author(s):  
Ladislav Ducsay ◽  
Pavel Ryant

In the years 1999 to 2001 in conditions of small-plot field experiments was carried out on loamy degraded chernozems at the Plant Breeding Station of Sládkovičovo-Nový Dvor to solve the problems of topdressing winter wheat (Triticum aestivum, L.), variety Astella, with different forms of nitrogenous fertilizers. Nitrogenous fertilizers were applied at the growth phase of the 6th leaf (Zadoks = 29). Four various forms of fertilizers were exemined: urea solution, DAM-390, DAM-390 + Dumag, DASA. Different weather conditions statistically highly significantly influenced grain yield in respective experimental years. Topdressing with nitrogen (30 kg N.ha–1) caused statistically highly significant increase of grain yield in all fertilized variants ranging from +0.29 t.ha–1 (applied of DAM-390) to +0.69 t.ha–1 (applied of DASA) according to respective treatments. Average grain yield in unfertilized control variant represented 7.23 t.ha–1. Nitrogen nutrition showed positive effect on the main macroelements offtake (N, P, K, Ca, Mg, S) by winter wheat grain in all fertilized variants. Nitrogen fertilizing positively influenced formation of wet gluten and crude protein with highest increment in variant with DASA and variant with DAM-390 + Dumag.


Author(s):  
Ilona VAGUSEVIČIENĖ ◽  
Aistė JUCHNEVIČIENĖ

The article deals with the effect of nitrogen fertilizer on the yield of different cultivars of winter wheat. Field experiments were conducted in 2011–2013 at the Experimental Station of Aleksandras Stulginskis University in carbonate shallow gleyic leached soil, (Calc(ar)i-Epihypogleyic Luvisol). The object of the investigation was winter wheat cultivars ‘Zentos’ and ‘Ada’. In sowing time the wheat was treated with granular superphosphate (P60) and potassium chloride (K60), and in spring, after the vegetative growth had resumed, in tillering time (BBCH 23–15) with ammonium nitrate (N60). Additionally, foliar fertilizer urea solution was used: N30, N40 at booting stage (BBCH 34–36) and N15, N30 at milk ripening stage (BBCH 71–74). It has been established that application of nitrogen fertilizer at booting and milk ripening stages increased the yield of wheat cultivars ‘Zentos’ and ‘Ada’ (0.06–1.74 and 0.41–1.74 t ha–1). The correlation and regression analysis confirmed that wheat grain yield statistically significantly correlated with nitrogen fertilizer application rates. The correlative relationships were very strong (r = 0.983 and r = 0.987). Irrespective of additional fertilization, genetic properties of the cultivars also had influence on the yield.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


Sign in / Sign up

Export Citation Format

Share Document