scholarly journals CHANGES IN MACRONUTRIENT CONCENTRATIONS IN SOIL SOLUTION FOLLOWING REGENERATION FELLING IN PINE AND SPRUCE STANDS: WHOLE-TREE HARVESTING VERSUS STEM-ONLY HARVESTING

Author(s):  
Ivars KLAVINS ◽  
Arta BARDULE ◽  
Zane LIBIETE

While conventional forest management in boreal and hemiboreal conditions has traditionally been targeted to use and enhance mainly provisioning services like timber production, the main goal of national and European forest policy is to ensure sustainable management of European forests in all aspects. Regeneration felling is a major disturbance in boreal and hemiboreal forests resulting in significant increase of organic matter on the forest floor in the form of logging residues (bark, small branches, tree tops) and severed roots (in case of stump harvesting), and can increase the risk of nutrient leaching. Recently, concern about the effect of forest management impact on macronutrient leaching potentially decreasing nutrient availability for the next forest generations and causing deterioration of water quality has been raised. In 2011, three objects to study the impact of different intensity regeneration felling (stem-only harvesting and whole-tree harvesting) were established in scientific research forests in Kalsnava forest district, eastern part of Latvia. Two sites were located on mineral soils (Myrtillosa and Hylocomiosa site type, dominant tree species Pinus sylvestris L.) and one on drained peat soil (Oxalidosa turf. mel. site type, dominant tree species Picea abies (L.) Karst.). Felling was performed in early spring 2013 with harvester, timber was extracted and logging residues were removed with forwarder, following “business as usual” principle. Soil solution samples were collected once or twice a month in 2012, 2013, 2014, 2015 and 2016. This study presents trends of pH and macronutrient (NO3--N, PO43--P, K) concentrations during five years – one year before harvesting and four years following harvesting. In general, significant forest management impact expressed as increase of macronutrient concentrations in soil solution was detected in the second and third year after harvesting, but in the fourth year concentrations started to decrease again.

1974 ◽  
Vol 4 (4) ◽  
pp. 530-535 ◽  
Author(s):  
Edwin H. White

This paper reports the effects of whole-tree harvesting of eight cottonwood stands on the soil nutrient pool. The data indicate possible site degradation by depletion of soil reserves of N, P, and K but not Ca and Mg on a range of alluvial site conditions in Alabama. Foresters must establish the rate of nutrient removal in intensive tree cropping systems for a variety of species and sites and develop prescriptions to minimize the impact.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1212
Author(s):  
Mohammad Reza Ghaffariyan ◽  
Eloïse Dupuis

Many parameters can influence the weight of harvesting residues per hectare that remain on plantation sites after extracting sawlogs and pulpwoods. This study aimed at quantifying the impact of the cut-to-length and whole-tree harvesting methods on the weight of harvesting residues using 26 case studies in Australian plantations. A database was created using case studies conducted in different plantations, to measure the weight of harvesting residues per hectare and the components of harvesting residues. An analysis of variance was applied to test the impact made by the harvesting methods. The results confirmed that the cut-to-length harvesting method produced a larger weight of residues (104.0 tonnes of wet matter per hectare (tWM/ha) without additional biomass recovery and 64.7 tWM/ha with additional biomass recovery after sawlog/pulpwood extraction) than the whole-tree harvesting method (12.5 tWM/ha). The fraction test showed that stem wood formed the largest proportion of the harvesting residues in cut-to-length sites and needles were the largest component of the pine harvesting residues in sites cleared by the whole-tree harvesting method. The outcomes of this study could assist plantation managers to set proper strategies for harvesting residues management. Future research could study the impact of product type, silvicultural regime, stand quality, age, equipment, etc., on the weight of harvesting residues.


1995 ◽  
Vol 25 (6) ◽  
pp. 997-1007 ◽  
Author(s):  
S. Brais ◽  
C. Camiré ◽  
D. Paré

To assess the impact of forest operations on soil nutrient status, modifications to forest floor, to 0–10 and 10–20 cm mineral soil base status, and to pH were evaluated 5–12 years following whole-tree harvesting and winter windrowing on dry to fresh and moist clayey sites in the clay belt region of northwestern Quebec. Whole-tree harvesting had few impacts on base concentrations and soil pH of dry to fresh sites. On moist sites, significant decreases in pH (−0.60 to −0.84 units), exchangeable Ca, total Ca, and, exchangeable Mg concentrations, base saturation, and effective cation exchange capacity were observed following harvesting. On dry to fresh sites, a decrease in the forest floor weight (−55%) accounted for significant reductions in exchangeable Ca (−55%), total Ca (−61%), and exchangeable K (−40%) pools in this layer, while reserves of both mineral layers were not affected. On moist sites, significant decreases in exchangeable Ca (−42 to −65%) and Mg (−35 to −56%) reserves occurred in all soil layers, while forest floor reserves of total Ca, Mg, and K decreased by 67, 48, and 40%, respectively. These reductions were caused by a loss of substrate in the forest floor (−44%) and a decrease in effective cation exchange capacity, exchangeable Ca saturation, and total Ca concentrations. Impacts of windrowing following whole-tree harvesting were limited to a reduction in reserves of exchangeable Ca (−22%), exchangeable Mg (−27%), total Ca (−20%), and total Mg (−29%) pools of the forest floor of moist sites. Values reported here are much greater than values generally predicted by a balance sheet approach and underline the need for more process-oriented studies. Impacts of these losses on long-term site productivity remain to be investigated.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 763 ◽  
Author(s):  
Cho ◽  
Choi ◽  
Paik ◽  
Mun ◽  
Cha ◽  
...  

Interest in the production of renewable energy using forest biomass is increasing in South Korea, and improved knowledge on operations logistics to lower biomass harvesting costs is needed. This study aimed to build a low-cost forest-biomass harvesting system by analyzing the costs of two integrated (cut-to-length and whole-tree) harvesting systems for logs and logging residues. Two integrated harvesting systems were carried out in the clear-cut mixed forest on a steep slope. Compared to the cut-to-length system that separately extracts logs and logging residues in a forest, the cable whole-tree harvesting system can save $8.8/green weight ton (Gwt) because it requires no additional yarding operation cost of logging residues. Moreover, a breakeven analysis shows that the required machine utilization rates that favor whole-tree harvesting systems over cut-to-length harvesting were more than 70% for cable harvesting systems. The introduction of the whole-tree harvesting system is, therefore, required to produce forest biomass at a low cost. In the future, studies on forest-biomass processing and transportation systems will be needed to provide a biomass feedstock supply cost from stump to biomass power plant.


2013 ◽  
Vol 43 (4) ◽  
pp. 396-404 ◽  
Author(s):  
Eva Ring ◽  
Lars Högbom ◽  
Gunnar Jansson

Nitrogen (N) fertilization and soil scarification are common measures used in commercial forestry in the boreal zone. This study was performed to investigate how previous N fertilization in two N-limited Scots pine (Pinus sylvestris L.) stands affected the soil-solution chemistry after final felling and also to determine the effect of subsequent soil scarification. Nitrogen had been applied to study plots at different intervals, resulting in total applications of 0, 450, 900, or 1800 kg N·ha−1. Soil-solution samples were collected before and after whole-tree harvesting of the P. sylvestris stand, from undisturbed soil and also after harvesting from soil below furrows, tilts, and areas between furrows created by disc trenching. After harvesting, the K+ concentration was lower at higher N fertilization intensities. No overall effect on the N concentrations was detected. Electrical conductivity and the concentrations of Na+, K+, Mg2+, Ca2+, Cl−, NO3−–N, total N, and total C were all affected by soil scarification. The highest concentrations of these variables were found below tilts and the lowest concentrations below furrows. The experiment was repeated, at a lower monitoring intensity, at a site where the previous total N application amounted to 0 and 450 kg N·ha−1. Here the NO3−–N concentration responded to disc trenching in a similar way to that observed in the main experiment. The study shows that previous N fertilization of N-limited forest does not necessarily affect the soil-solution chemistry significantly after whole-tree harvesting.


Author(s):  
Giuliana Zanchi ◽  
Klas Lucander ◽  
Veronika Kronnäs ◽  
Martin Erlandsson Lampa ◽  
Cecilia Akselsson

AbstractThe study investigated the effects of forest residue extraction on tree growth and base cations concentrations in soil water under different climatic conditions in Sweden. For this purpose, the dynamic model ForSAFE was used to compare the effects of whole-tree harvesting and stem harvesting on tree biomass and the soil solution over time at 6 different forest sites. The study confirmed the results from experimental sites showing a temporary reduction of base cation concentration in the soil solution for a period of 20–30 years after whole-tree harvesting. The model showed that this was mainly caused by the reduced inputs of organic material after residue extraction and thereby reduced nutrient mineralisation in the soil. The model results also showed that whole-tree harvesting can affect tree growth at nitrogen-poor forest sites, such as the ones in northern Sweden, due to the decrease of nitrogen availability after residue removal. Possible ways of reducing this impact could be to compensate the losses with fertilisation or extract residue without foliage in areas of Sweden with low nitrogen deposition. The study highlighted the need to better understand the medium- and long-term effects of whole-tree harvesting on tree growth, since the results suggested that reduced tree growth after whole-tree harvesting could be only temporary. However, these results do not account for prolonged extraction of forest residues that could progressively deplete nutrient pools and lead to permanent effects on tree growth.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 841
Author(s):  
Iveta Desaine ◽  
Annija Kārkliņa ◽  
Roberts Matisons ◽  
Anna Pastare ◽  
Andis Adamovičs ◽  
...  

The increased removal of forest-derived biomass with whole-tree harvesting (WTH) has raised concerns about the long-term productivity and sustainability of forest ecosystems. If true, this effect needs to be factored in the assessment of long-term feasibility to implement such a drastic forest management measure. Therefore, the economic performance of five experimental plantations in three different forest types, where in 1971 simulated WTH event occurred, was compared with pure, planted and conventionally managed (CH) Norway spruce stands of similar age and growing conditions. Potential incomes of CH and WTH stands were based on timber prices for period 2014–2020. However, regarding the economics of root and stump biomass utilization, they were not included in the estimates. In any given price level, the difference of internal rate of return between the forest types and selected managements were from 2.5% to 6.2%. Therefore, Norway spruce stands demonstrate good potential of independence regardless of stump removal at the previous rotation.


1984 ◽  
Vol 27 (1) ◽  
pp. 002-004 ◽  
Author(s):  
Cleveland J. Biller ◽  
Edward L. Fisher

Sign in / Sign up

Export Citation Format

Share Document