scholarly journals Lack of germline mutation at codon 211 of the prion protein gene (PRNP) in Korean native cattle — Short communication

2017 ◽  
Vol 65 (1) ◽  
pp. 147-152 ◽  
Author(s):  
Yong-Chan Kim ◽  
Byung-Hoon Jeong

Bovine prion diseases are composed of two types of bovine spongiform encephalopathy (BSE), classical BSE and atypical BSE. Recent studies have identified one case of atypical BSE with an E211K mutation. E211K is homologous to the human E200K mutation, which is related to familial Creutzfeldt-Jakob disease (CJD), one of the familial forms of human prion diseases. To date, familial forms of prion diseases have not been reported in non-human animals. Because the familial forms of human prion diseases account for more than 10% of all human prion disease cases, the detection of the E211K mutation in healthy cattle is very important for verifying the role of this mutation as a familial form of BSE. To detect putative mutations related to familial BSE, specifically E211K in Korean native cattle (Hanwoo) and Korean dairy cattle (Holstein), we performed direct sequencing targeting codon 211 and the adjacent regions of the bovine prion protein (PRNP) gene in 384 Hanwoo and 152 Holstein cattle. We did not find the E211K mutation in any of the Korean cattle. Although we did not find the E211K mutation in Korean native cattle, E211K is a postulated mutation; therefore, further screening in other countries and larger samples is highly desirable.

2017 ◽  
Vol 92 (1) ◽  
Author(s):  
Hideyuki Hara ◽  
Hironori Miyata ◽  
Nandita Rani Das ◽  
Junji Chida ◽  
Tatenobu Yoshimochi ◽  
...  

ABSTRACTConformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals. We previously reported that the octapeptide repeat (OR) region could be dispensable for converting PrPCinto PrPScafter infection with RML prions. We demonstrated that mice transgenically expressing mouse PrP with deletion of the OR region on the PrP knockout background, designated Tg(PrPΔOR)/Prnp0/0mice, did not show reduced susceptibility to RML scrapie prions, with abundant accumulation of PrPScΔOR in their brains. We show here that Tg(PrPΔOR)/Prnp0/0mice were highly resistant to BSE prions, developing the disease with markedly elongated incubation times after infection with BSE prions. The conversion of PrPΔOR into PrPScΔOR was markedly delayed in their brains. These results suggest that the OR region may have a crucial role in the conversion of PrPCinto PrPScafter infection with BSE prions. However, Tg(PrPΔOR)/Prnp0/0mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated incubation times after infection with RML and 22L prions. PrPScΔOR accumulated only slightly less in the brains of RML- or 22L-infected Tg(PrPΔOR)/Prnp0/0mice than PrPScin control wild-type mice. Taken together, these results indicate that the OR region of PrPCcould play a differential role in the pathogenesis of BSE prions and RML or 22L scrapie prions.IMPORTANCEStructure-function relationship studies of PrPCconformational conversion into PrPScare worthwhile to understand the mechanism of the conversion of PrPCinto PrPSc. We show here that, by inoculating Tg(PrPΔOR)/Prnp0/0mice with the three different strains of RML, 22L, and BSE prions, the OR region could play a differential role in the conversion of PrPCinto PrPScafter infection with RML or 22L scrapie prions and BSE prions. PrPΔOR was efficiently converted into PrPScΔOR after infection with RML and 22L prions. However, the conversion of PrPΔOR into PrPScΔOR was markedly delayed after infection with BSE prions. Further investigation into the role of the OR region in the conversion of PrPCinto PrPScafter infection with BSE prions might be helpful for understanding the pathogenesis of BSE prions.


2001 ◽  
Vol 79 (5) ◽  
pp. 613-628 ◽  
Author(s):  
Peter Mastrangelo ◽  
David Westaway

The prion protein gene Prnp encodes PrPSc, the major structural component of prions, infectious pathogens causing a number of disorders including scrapie and bovine spongiform encephalopathy (BSE). Missense mutations in the human Prnp gene, PRNP, cause inherited prion diseases such as familial Creutzfeldt–Jakob Disease. In uninfected animals, Prnp encodes a GPI-anchored protein denoted PrPC, and in prion infections, PrPCis converted to PrPScby templated refolding. Although Prnp is conserved in mammalian species, attempts to verify interactions of putative PrP-binding proteins by genetic means have proven frustrating in that two independent lines of Prnp gene ablated mice (Prnp0/0mice: ZrchI and Npu) lacking PrPCremain healthy throughout development. This indicates that PrPCserves a function that is not apparent in a laboratory setting or that other molecules have overlapping functions. Shuttling or sequestration of synaptic Cu(II) via binding to N-terminal octapeptide residues and (or) signal transduction involving the fyn kinase are possibilities currently under consideration. A new point of entry into the issue of prion protein function has emerged from identification of a paralog, Prnd, with 25% coding sequence identity to Prnp. Prnd lies downstream of Prnp and encodes the Dpl protein. Like PrPC, Dpl is presented on the cell surface via a GPI anchor and has three α-helices: however, it lacks the conformationally plastic and octapeptide repeat domains present in its well-known relative. Interestingly, Dpl is overexpressed in two other lines of Prnp0/0mice (Ngsk and Rcm0) via intergenic splicing events. These lines of Prnp0/0mice exhibit ataxia and apoptosis of cerebellar cells, indicating that ectopic synthesis of Dpl protein is toxic to CNS neurons: this inference has now been confirmed by the construction of transgenic mice expressing Dpl under the direct control of the PrP promoter. Remarkably, Dpl-programmed ataxia is rescued by wt Prnp transgenes. The interaction between the Prnp and Prnd genes in mouse cerebellar neurons may have a physical correlate in competition between Dpl and PrPCwithin a common biochemical pathway that, when misregulated, leads to apoptosis.Key words: spongiform encephalopathy, neurodegenerative disease, paralogs, scrapie, CJD.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yong-Chan Kim ◽  
Seon-Kwan Kim ◽  
Sae-Young Won ◽  
Byung-Hoon Jeong

Abstract Bovine spongiform encephalopathy (BSE) is a fatal infectious neurodegenerative disease caused by the accumulation of pathogenic prion protein (PrPSc) in the central nervous system (CNS), particularly in the brain. In a recent study, the shadow of prion protein (Sho), encoded by the shadow of prion protein (SPRN) gene, accelerates the progression of prion diseases, and a 12-bp insertion/deletion polymorphism in the coding region of the SPRN gene is associated with susceptibility to atypical BSE-affected Polish cattle. To date, the genetic study of the SPRN gene in Korean cattle has not been performed. In this study, we investigated the genotype and allele frequencies of SPRN polymorphisms in 235 Hanwoo and 212 Holstein cattle and analyzed the linkage disequilibrium (LD) and haplotypes of SPRN polymorphisms. In addition, we compared the distribution of the 12-bp insertion/deletion polymorphism between atypical BSE-diagnosed Polish cattle and Korean cattle to evaluate the susceptibility of atypical BSE. Furthermore, we estimated a deleterious effect of polymorphisms on the Sho protein using PROVEAN. We found a total of seven polymorphisms, including one novel single nucleotide polymorphism (SNP), c.231G>A. We also found significantly different distributions of genotype, allele and haplotype frequencies of seven polymorphisms between Hanwoo and Korean Holstein cattle. In addition, all polymorphisms showed strong LDs among the seven polymorphisms. Interestingly, Hanwoo cattle showed more potential susceptible distribution in the genotype and allele frequencies of the 12-bp insertion/deletion polymorphisms of the SPRN gene than Holstein cattle. Finally, using PROVEAN, we found one novel deleterious nonsynonymous SNP to Sho protein, c.110G>C (G37A). To the best of our knowledge, this is the first study of the SPRN gene in Korean cattle.


2005 ◽  
Vol 27 (4) ◽  
pp. 6-8
Author(s):  
David R. Brown

Prion diseases are neurodegenerative diseases1 that have been linked together because they may potentially have the same cause. These include the diseases scrapie of sheep and BSE (bovine spongiform encephalopathy) of cattle, and also several human diseases that include sporadic CJD (Creutzfeldt-Jakob) disease and a variety of inherited forms. The inherited forms of prion diseases are linked to mutations within the gene for the prion protein. Around 85% of all human cases of prion disease are sporadic CJD, which is a disease affecting people of around 60 years of age. The cause of this disease remains unknown. Unfortunately, the name of this disease causes some confusion, as it is similar to vCJD (variant CJD), a related disease of much younger people.


2010 ◽  
Vol 3 ◽  
pp. MBI.S4043
Author(s):  
Kazuo Tsukui ◽  
Yasushi Iwasaki ◽  
Masamitsu Nagaoka ◽  
Kenji Tadokoro

The infectious agent of transmissible spongiform encephalopathy (TSE) was assumed to be the aggregate of abnormal prion protein isoform (PrPsc). We observed that lowering the pH of 3% SDS-inoculated plasma or brain homogenate after PK digestion to 4.5 (acidic SDS condition) enabled to precipitate proteinase K-resistant prion protein (PrPres) in plasma as well as PrPres in the brain with synthetic poly-A RNA as affinity aggregate. Therefore, we determined if RNA molecules could be used for discriminating TSE patients from healthy individuals. We also examined the plasma of patients with classical Creutzfeldt–Jakob disease (CJD) and other brain disorders who were not diagnosed with TSE. The results indicated that RNA approximately 1.5–2.0 kb in length was commonly observed in the plasma of patients with brain disorders but was not detected in the plasma of healthy volunteers. Enhanced expression of RNA and its protection from endogenous nucleases might occur in the former group of patients. Moreover, we speculate that the non-transmissible neuronal disorders overlap with prion diseases.


2019 ◽  
Vol 53 (1) ◽  
pp. 117-147 ◽  
Author(s):  
Simon Mead ◽  
Sarah Lloyd ◽  
John Collinge

Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene ( PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non- PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 39 ◽  
Author(s):  
Sae-Young Won ◽  
Yong-Chan Kim ◽  
Seon-Kwan Kim ◽  
Byung-Hoon Jeong

Prion diseases are fatal neurodegenerative diseases and are characterized by the accumulation of abnormal prion protein (PrPSc) in the brain. During the outbreak of the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, prion diseases in several species were reported; however, horse prion disease has not been reported thus far. In previous studies, the shadow of prion protein (Sho) has contributed to an acceleration of conversion from normal prion protein (PrPC) to PrPSc, and the shadow of prion protein gene (SPRN) polymorphisms have been significantly associated with the susceptibility of prion diseases. We investigated the genotype, allele and haplotype frequencies of the SPRN gene using direct sequencing. In addition, we analyzed linkage disequilibrium (LD) and haplotypes among polymorphisms. We also investigated LD between PRNP and SPRN single nucleotide polymorphisms (SNPs). We compared the amino acid sequences of Sho protein between the horse and several prion disease-susceptible species using ClustalW2. To perform Sho protein modeling, we utilized SWISS-MODEL and Swiss-PdbViewer programs. We found a total of four polymorphisms in the equine SPRN gene; however, we did not observe an in/del polymorphism, which is correlated with the susceptibility of prion disease in prion disease-susceptible animals. The SPRN SNPs showed weak LD value with PRNP SNP. In addition, we found 12 horse-specific amino acids of Sho protein that can induce significantly distributional differences in the secondary structure and hydrogen bonds between the horse and several prion disease-susceptible species. To the best of our knowledge, this is the first report regarding the genetic and structural characteristics of the equine SPRN gene.


Author(s):  
Juan Carlos Espinosa ◽  
Alba Marín-Moreno ◽  
Patricia Aguilar-Calvo ◽  
Sylvie L Benestad ◽  
Olivier Andreoletti ◽  
...  

Abstract Although experimental transmission of bovine spongiform encephalopathy (BSE) to pigs and transgenic mice expressing pig cellular prion protein (PrPC) (porcine PrP [PoPrP]–Tg001) has been described, no natural cases of prion diseases in pig were reported. This study analyzed pig-PrPC susceptibility to different prion strains using PoPrP-Tg001 mice either as animal bioassay or as substrate for protein misfolding cyclic amplification (PMCA). A panel of isolates representatives of different prion strains was selected, including classic and atypical/Nor98 scrapie, atypical-BSE, rodent scrapie, human Creutzfeldt-Jakob-disease and classic BSE from different species. Bioassay proved that PoPrP-Tg001-mice were susceptible only to the classic BSE agent, and PMCA results indicate that only classic BSE can convert pig-PrPC into scrapie-type PrP (PrPSc), independently of the species origin. Therefore, conformational flexibility constraints associated with pig-PrP would limit the number of permissible PrPSc conformations compatible with pig-PrPC, thus suggesting that pig-PrPC may constitute a paradigm of low conformational flexibility that could confer high resistance to the diversity of prion strains.


2008 ◽  
Vol 416 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Sabrina Cronier ◽  
Nathalie Gros ◽  
M. Howard Tattum ◽  
Graham S. Jackson ◽  
Anthony R. Clarke ◽  
...  

Disease-related PrPSc [pathogenic PrP (prion protein)] is classically distinguished from its normal cellular precursor, PrPC(cellular PrP) by its detergent insolubility and partial resistance to proteolysis. Although molecular diagnosis of prion disease has historically relied upon detection of protease-resistant fragments of PrPSc using PK (proteinase K), it is now apparent that a substantial fraction of disease-related PrP is destroyed by this protease. Recently, thermolysin has been identified as a complementary tool to PK, permitting isolation of PrPSc in its full-length form. In the present study, we show that thermolysin can degrade PrPC while preserving both PK-sensitive and PK-resistant isoforms of disease-related PrP in both rodent and human prion strains. For mouse RML (Rocky Mountain Laboratory) prions, the majority of PK-sensitive disease-related PrP isoforms do not appear to contribute significantly to infectivity. In vCJD (variant Creutzfeldt–Jakob disease), the human counterpart of BSE (bovine spongiform encephalopathy), up to 90% of total PrP present in the brain resists degradation with thermolysin, whereas only ∼15% of this material resists digestion by PK. Detection of PK-sensitive isoforms of disease-related PrP using thermolysin should be useful for improving diagnostic sensitivity in human prion diseases.


2020 ◽  
Vol 79 (4) ◽  
pp. 419-429
Author(s):  
Shoko Sadashima ◽  
Hiroyuki Honda ◽  
Satoshi O Suzuki ◽  
Masahiro Shijo ◽  
Shinichi Aishima ◽  
...  

Abstract Gerstmann-Sträussler-Scheinker (GSS) disease with P102L mutation and familial Creutzfeldt-Jakob disease (CJD) with V180I mutation are 2 major hereditary prion diseases in Japan. GSS and some familial CJD [V180I] exhibit characteristic prion protein (PrP) plaques. Overexpression of the astrocytic water channel proteins aquaporin (AQP) 1 and AQP4 was recently reported in sporadic CJD. To clarify the pathological characteristics of AQP1 and AQP4 in prion disease patient brains with plaque-type deposition, we investigated 5 patients with GSS, 2 patients with CJD [V180I], and 2 age-matched control cases without neurological diseases using immunohistochemistry and double immunofluorescence methods. We demonstrated that there is the intense expression of AQP1 and AQP4 around prion plaques, especially in distal astrocytic processes deep inside these plaques. Similar results have been reported in the senile plaques and ghost tangles of Alzheimer disease brains and a protective role of AQP4 in which AQP4 is redistributed toward the plaques and works as a barrier against the deleterious effects of these plaques has been suggested. Our results, which show a similar clustering of AQPs around PrP plaques, therefore support the possibility that AQPs also have a protective role in plaque formation in prion diseases.


Sign in / Sign up

Export Citation Format

Share Document