Prevalence of trimethoprim/sulfamethoxazole resistance genes among Stenotrophomonas maltophilia clinical isolates in Egypt

Author(s):  
Amel Elsheredy ◽  
Azza Elsheikh ◽  
Abeer Ghazal ◽  
Sherine Shawky

Abstract Stenotrophomonas maltophilia is an important multidrug resistant nosocomial pathogen. Trimethoprim/sulfamethoxazole (TMP/SMX) is considered the drug of choice for treatment of S. maltophilia infections, thus emerging resistance to TMP/SMX poses a serious threat. In the present study we aimed to investigate the frequency of TMP/SMX resistance genes (sul1, sul2, dfrA), and to evaluate their relatedness with integron 1 (int1), and insertion sequence common regions (ISCR) among 100 S. maltophilia from different clinical isolates in Egypt. Isolates were identified biochemically and confirmed by VITEK2. Detection of sul1, sul2, and dfrA genes, int1 and ISCR elements was performed by PCR. Among the 16 TMP/SMX resistant isolates, sul1 gene was detected in all of them, and it was associated with int1 gene presence in all resistant isolates. The sul2 gene was detected in 6 out of 16 resistant isolates (37.5%), and only 2 of the 16 resistant isolates (12.5%) harboured dfrA gene. ISCR was detected in 10 of the resistant isolates (62.5%) and in 4 of them it was associated with the presence of sul2 gene. Among the 84 TMP/SMX sensitive isolates, sul1 gene was detected in 15 (17.8%), int1 in 16 (19%) and ISCR in 6 (7.1%). None of the susceptible isolates had sul2 or dfrA genes. These findings point out an increasing frequency of TMP/SMX resistance genes among S. maltophilia clinical isolates in our region, so the adoption of prudent use of S. maltophilia antimicrobial agents and the establishment of a surveillance system are desperately needed.

1997 ◽  
Vol 119 (2) ◽  
pp. 175-181 ◽  
Author(s):  
Y. HIRAKATA ◽  
T. YAMAGUCHI ◽  
K. IZUMIKAWA ◽  
J. MATSUDA ◽  
K. TOMONO ◽  
...  

Glycopeptide resistance in enterococci is now a cause of clinical concern in the United States and Europe. However, details of vancomycin resistance in enterococci in Japan have been unknown. We measured minimum inhibitory concentrations (MICs) of various antimicrobial agents for a total of 218 clinical strains of enterococci isolated in our hospital in 1995–6 in addition to 15 strains with known genotypic markers of resistance. We also screened vancomycin resistance genes using a single step multiplex-PCR.In clinical isolates, only two strains of Enterococcus gallinarum were of intermediate resistance to vancomycin (MIC, 8 μg/ml), while the others were all susceptible. Glycopeptides (vancomycin and teicoplanin) and streptogramins (RP 58500 and RPR 106972) showed potent antimicrobial effects for the isolates. In addition, ampicillin was also potent for Enterococcus faecalis, while ampicillin, minocycline and gentamicin were potent for Enterococcus avium. No vanA or vanB genes were detected, while vanC1 and vanC23 genes were detected from two and four strains, respectively. Our results suggest that incidence of VRE in Japan may be estimated as still very low at this time.


Microbiology ◽  
2011 ◽  
Vol 157 (7) ◽  
pp. 2133-2142 ◽  
Author(s):  
Ruella Rouf ◽  
Sara M. Karaba ◽  
Jenny Dao ◽  
Nicholas P. Cianciotto

The environmental bacterium Stenotrophomonas maltophilia is increasingly described as a multidrug-resistant pathogen of humans, being associated with pneumonia, among other diseases. But the degree to which S. maltophilia is capable of replicating in a mammalian host has been an issue of controversy. Using a model of intranasal inoculation into adult A/J mice, we now document that S. maltophilia strain K279a, the clinical isolate of S. maltophilia whose complete genome sequence was recently determined, is in fact capable of replicating in lungs, displaying as much as a 10-fold increase in c.f.u. in the first 8 h of infection. Importantly, as few as 104 c.f.u. deposited into the A/J lung was sufficient to promote bacterial outgrowth. Bacterial replication in the lungs of the A/J mice was followed by elevations in pro-inflammatory cytokines and also promoted resistance to subsequent challenge. We also found that DBA/2 mice were permissive for S. maltophilia K279a replication, although the level of growth and persistence in these animals was less than it was in the A/J mice. In contrast, the BALB/c and C57BL/6 mouse strains were non-permissive for S. maltophilia K279a growth. Interestingly, when five additional clinical isolates were introduced into the A/J lung, marked differences in survival were observed, with some strains being much less infective than K279a and others being appreciably more infective. These data suggest that the presence of major virulence determinants is variable among clinical isolates. Overall, this study confirms the infectivity of S. maltophilia for the mammalian host, and illustrates how both host and bacterial factors affect the outcome of Stenotrophomonas infection.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
María Pérez-Varela ◽  
Jordi Corral ◽  
Jesús Aranda ◽  
Jordi Barbé

ABSTRACTAcinetobacter baumanniihas emerged as an important multidrug-resistant nosocomial pathogen. In previous work, we identified a putative MFS transporter, AU097_RS17040, involved in the pathogenicity ofA. baumannii(M. Pérez-Varela, J. Corral, J. A. Vallejo, S. Rumbo-Feal, G. Bou, J. Aranda, and J. Barbé, Infect Immun 85:e00327-17, 2017,https://doi.org/10.1128/IAI.00327-17). In this study, we analyzed the susceptibility to diverse antimicrobial agents ofA. baumanniicells defective in this transporter, referred to as AbaQ. Our results showed that AbaQ is mainly involved in the extrusion of quinolone-type drugs inA. baumannii.


2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Xuebing Wang ◽  
Haijian Zhou ◽  
Dongke Chen ◽  
Pengcheng Du ◽  
Ruiting Lan ◽  
...  

ABSTRACT Corynebacterium striatum is an emerging multidrug-resistant (MDR) pathogen that occurs primarily among immunocompromised and chronically ill patients. However, little is known about the genomic diversity of C. striatum, which contributes to its long-term persistence and transmission in hospitals. In this study, a total of 192 C. striatum isolates obtained from 14 September 2017 to 29 March 2018 in a hospital in Beijing, China, were analyzed by antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE). Whole-genome sequencing was conducted on 91 isolates. Nearly all isolates (96.3%, 183/190) were MDR. The highest resistance rate was observed for ciprofloxacin (99.0%, 190/192), followed by cefotaxime (90.6%, 174/192) and erythromycin (89.1%, 171/192). PFGE separated the 192 isolates into 79 pulsotypes, and differences in core genome single-nucleotide polymorphisms (SNPs) partitioned the 91 isolates sequenced into four clades. Isolates of the same pulsotype were identical or nearly identical at the genome level, with some exceptions. Two dominant subclones, clade 3a, and clade 4a, were responsible for the hospital-wide dissemination. Genomic analysis further revealed nine resistance genes mobilized by eight unique cassettes. PFGE and whole-genome sequencing revealed that the C. striatum isolates studied were the result mainly of predominant clones spreading in the hospital. C. striatum isolates in the hospital progressively acquired resistance to antimicrobial agents, demonstrating that isolates of C. striatum may adapt rapidly through the acquisition and accumulation of resistance genes and thus evolve into dominant and persistent clones. These insights will be useful for the prevention of C. striatum infection in hospitals.


2007 ◽  
Vol 56 (7) ◽  
pp. 956-963 ◽  
Author(s):  
Tanya Strateva ◽  
Vessela Ouzounova-Raykova ◽  
Boyka Markova ◽  
Albena Todorova ◽  
Yulia Marteva-Proevska ◽  
...  

A total of 203 clinical isolates of Pseudomonas aeruginosa was collected during 2001–2006 from five university hospitals in Sofia, Bulgaria, to assess the current levels of antimicrobial susceptibility and to evaluate resistance mechanisms to antipseudomonal antimicrobial agents. The antibiotic resistance rates against the following antimicrobials were: carbenicillin 93.1 %, azlocillin 91.6 %, piperacillin 86.2 %, piperacillin/tazobactam 56.8 %, ceftazidime 45.8 %, cefepime 48.9 %, cefpirome 58.2 %, aztreonam 49.8 %, imipenem 42.3 %, meropenem 45.5 %, amikacin 59.1 %, gentamicin 79.7 %, tobramycin 89.6 %, netilmicin 69.6 % and ciprofloxacin 80.3 %. A total of 101 of the studied P. aeruginosa isolates (49.8 %) were multidrug resistant. Structural genes encoding class A and class D β-lactamases showed the following frequencies: bla VEB-1 33.1 %, bla PSE-1 22.5 %, bla PER-1 0 %, bla OXA-groupI 41.3 % and bla OXA-groupII 8.8 %. IMP- and VIM-type carbapenemases were not detected. In conclusion, the studied clinical strains of P. aeruginosa were problematic nosocomial pathogens. VEB-1 extended-spectrum β-lactamases appear to have a significant presence among clinical P. aeruginosa isolates from Sofia. Carbapenem resistance was related to non-enzymic mechanisms such as a deficiency of OprD proteins and active efflux.


2020 ◽  
Author(s):  
Ifey Alio ◽  
Mirja Gudzuhn ◽  
Marie Schölmerich ◽  
Pablo Pérez García ◽  
Christel Vollstedt ◽  
...  

<p><strong>Stenotrophomonas maltophilia</strong><strong> is one of the most frequently isolated multidrug resistant opportunistic pathogens. It contributes to disease progression in cystic fibrosis patients and is found in wounds, other infected tissues and on catheter surfaces. Only little is known on key processes linked to biofilm formation of S. maltophilia on a broader basis. Thus the aim of this study was the identification of key processes involved in biofilm formation of S. maltophilia on a global level. Therefore, we analyzed biofilm profiles of 300 globally collected clinical and environmental isolates of the main and recently identified lineages Sgn3, Sgn4 and Sm2 - Sm18 (Groeschel et al., 2020). These data together with the 3D structural analysis of a subset of clinical 40 clinical isolates revealed an unexpectedly high phenotypic variability on a strain specific level. Further transcriptome analysis of seven clinical isolates using biofilm grown cells identified a set of 106 shared and coexpressed genes and roughly 30-35 strain-specific genes. Based on these findings S. maltophilia employs a mostly fermentative growth modus under the biofilm conditions and uptake of iron, phosphorous and other metals appears to be of high relevance. Surprisingly, the transcriptome profiles of biofilm versus planktonic cells revealed that only 8.6% of all genes were differentially regulated when both conditions were compared.  This implies that only relatively few genes contribute to the change from planktonic to biofilm life style. Thereby iron uptake appears to be a key factor involved in this metabolic shift. The transcriptome data generated in this study together with the phenotypic and metabolic analysis represent so far the largest data set on S. maltophilia biofilm versus planktonic grown cells. This study now lays the foundation for the identification of new strategies in fighting S. maltophilia infections in clinical settings.</strong></p> <p>Ref:  Gröschel et al., 2020 ,The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. Nature Commun. 2020 Apr 27;11(1):2044. doi: 10.1038/s41467-020-15123-0.</p>


2004 ◽  
Vol 48 (1) ◽  
pp. 168-171 ◽  
Author(s):  
Pablo San Gabriel ◽  
Juyan Zhou ◽  
Setareh Tabibi ◽  
Yunhua Chen ◽  
Marco Trauzzi ◽  
...  

ABSTRACT Stenotrophomonas maltophilia is a newly emerging pathogen being detected with increasing frequency in patients with cystic fibrosis (CF). The impact of this multidrug-resistant organism on lung function is uncertain. The optimal treatment for S. maltophilia in CF patients is unknown. We studied the in vitro activity of ten antimicrobial agents, and conducted synergy studies by using checkerboard dilutions of eight pairs of antimicrobial agents against strains isolated from 673 CF patients from 1996 to 2001. This represents approximately 7 to 23% of the CF patients in the United States who harbor S. maltophilia annually. Doxycycline was the most active agent and inhibited 80% of 673 initial patient isolates, while trimethoprim-sulfamethoxazole inhibited only 16%. High concentrations of colistin proved more active than high concentrations of tobramycin and gentamicin. Serial isolates (n = 151) from individual patients over time (median, 290 days) showed minimal changes in resistance. Synergistic or additive activity was demonstrated by trimethoprim-sulfamethoxazole paired with ticarcillin-clavulanate (65% of strains), ciprofloxacin paired with ticarcillin-clavulanate (64% of strains), ciprofloxacin paired with piperacillin-tazobactam (59% of strains), trimethoprim-sulfamethoxazole paired with piperacillin-tazobactam (55% of strains), and doxycycline paired with ticarcillin-clavulanate (49% of strains). In all, 522 (78%) isolates were multidrug resistant (i.e., resistant to all agents in two or more antimicrobial classes) but 473 (91%) of these were inhibited by at least one antimicrobial combination (median, four; range, one to eight). To determine appropriate treatment for patients with CF, it is important to monitor the prevalence, antimicrobial susceptibility, and clinical impact of S. maltophilia in this patient population.


2017 ◽  
Vol 5 (5) ◽  
Author(s):  
Keesha E. Erickson ◽  
Nancy E. Madinger ◽  
Anushree Chatterjee

ABSTRACT We report here the draft genome sequences of two clinically isolated Acinetobacter baumannii strains. These samples were obtained from patients at the University of Colorado Hospital in 2007 and 2013 and encode an estimated 20 and 13 resistance genes, respectively.


2019 ◽  
Author(s):  
Mamitina Alain Noah Rabenandrasana ◽  
Volasoa Andrianoelina ◽  
Melanie Bonneault ◽  
Perlinot Herindrainy ◽  
Benoit Garin ◽  
...  

ABSTRACTStenotrophomonas maltophilia has been recognized as an emerging multidrug resistant organism in hospital settings due to its resistance to a broad range of antimicrobial agents. These include β-lactams and aminoglycosides, afforded by the existence of intrinsic and acquired resistance mechanisms. Trimethoprim/sulfamethoxazole (SXT) is recommended as one of the best treatment choices against S. maltophilia infections; however increasing resistance to SXT has complicated the treatment. From July 2014 to March 2015, individuals and surfaces from a neonatology ward in Antananarivo, Madagascar, were longitudinally followed to assess the transmission of bacteria resistant to antibiotics between neonates, individuals (parents and nurses) and ward environments. Four S. maltophilia strains were successively isolated from a water-tap (N=1), from feces obtained from a newborn (N=1), and nursing staff (N=2). Antimicrobial susceptibility testing and whole genome sequencing were performed on each isolate. Based on coregenome alignment, all strains were identical and belonged to the new sequence type ST-288. They were resistant to trimethoprim-sulfamethoxazole, carbapenems and intermediate to levofloxacin. Each isolate carried the aadB, strA, strB and sul1 genes located in a class I integron but variants of the dfrA gene were absent. We assessed by PROVEAN analysis the single nucleotide mutations found in folA, folC and folM genes and only the mutation in folA (A114T:GCC→ACC) has an effect on the activity of trimethoprim. Our findings demonstrated the prolonged presence of SXT-resistant S. maltophilia in a clinical setting with consecutive transfers from the environment to a newborn and staff based on the isolation dates. We also hypothesized that single nucleotide mutations in folA could be responsible for trimethoprim resistance.


2019 ◽  
Author(s):  
Matthias I Gröschel ◽  
Conor J Meehan ◽  
Ivan Barilar ◽  
Margo Diricks ◽  
Aitor Gonzaga ◽  
...  

AbstractRecent studies portend a rising global spread and adaptation of human- or healthcare-associated pathogens. Here, we analysed an international collection of the emerging, multidrug-resistant, opportunistic pathogen Stenotrophomonas maltophilia from 22 countries to infer population structure and clonality at a global level. We show that the S. maltophilia complex is divided into 23 monophyletic lineages, most of which harboured strains of all degrees of human virulence. Lineage Sm6 comprised the highest rate of human-associated strains, linked to key virulence and resistance genes. Transmission analysis identified potential outbreak events of genetically closely related strains isolated within days or weeks in the same hospitals.One Sentence SummaryThe S. maltophilia complex comprises genetically diverse, globally distributed lineages with evidence for intra-hospital transmission.


Sign in / Sign up

Export Citation Format

Share Document