scholarly journals SHP2-independent tyrosine dephosphorylation of cortactin and vinculin during infection with Helicobacter pylori

2020 ◽  
Vol 10 (1) ◽  
pp. 20-27
Author(s):  
Jakob Knorr ◽  
Steffen Backert ◽  
Nicole Tegtmeyer

The gastric pathogen Helicobacter pylori colonizes approximately half of the human world population. The bacterium injects the effector protein cytotoxin associated gene A (CagA) via a type-IV secretion system into host epithelial cells, where the protein becomes phosphorylated at specific EPIYA-motifs by cellular kinases. Inside the host cell, CagA can interact with over 25 different proteins in both phosphorylation-dependent and phosphorylation-independent manners, resulting in manipulation of host-cell signaling pathways. During the course of an H. pylori infection, certain host-cell proteins undergo tyrosine dephosphorylation in a CagA-dependent manner, including the actin-binding proteins cortactin and vinculin. A predominant response of intracellular CagA is the binding and activation of tyrosine phosphatase, the human Src-homology-region-2-domain-containing-phosphatase-2 (SHP2). Here, we considered the possibility that activated SHP2 might be responsible for the dephosphorylation of cortactin and vinculin. To investigate this, phosphatase inhibitor studies were performed. Additionally, a complete knockout mutant of SHP2 in AGS cells was created by CRISPR/Cas9 technology, and these cells were infected with H. pylori. However, neither the presence of an inhibitor nor the inactivation of SHP2 prevented the dephosphorylation of cortactin and vinculin upon CagA delivery. Tyrosine dephosphorylation of these proteins is therefore independent of SHP2 and instead must be caused by another, as yet unidentified, protein tyrosine phosphatase.

2016 ◽  
Vol 85 (1) ◽  
Author(s):  
William E. Sause ◽  
Daniela Keilberg ◽  
Soufiane Aboulhouda ◽  
Karen M. Ottemann

ABSTRACT The human pathogen Helicobacter pylori uses the host receptor α5β1 integrin to trigger inflammation in host cells via its cag pathogenicity island (cag PAI) type IV secretion system (T4SS). Here, we report that the H. pylori ImaA protein (HP0289) decreases the action of the cag PAI T4SS via tempering the bacterium's interaction with α5β1 integrin. Previously, imaA-null mutants were found to induce an elevated inflammatory response that was dependent on the cag PAI T4SS; here we extend those findings to show that the elevated response is independent of the CagA effector protein. To understand how ImaA could be affecting cag PAI T4SS activity at the host cell interface, we utilized the Phyre structural threading program and found that ImaA has a region with remote homology to bacterial integrin-binding proteins. This region was required for ImaA function. Unexpectedly, we observed that imaA mutants bound higher levels of α5β1 integrin than wild-type H. pylori, an outcome that required the predicted integrin-binding homology region of ImaA. Lastly, we report that ImaA directly affected the amount of host cell β1 integrin but not other cellular integrins. Our results thus suggest a model in which H. pylori employs ImaA to regulate interactions between integrin and the T4SS and thus alter the host inflammatory strength.


2005 ◽  
Vol 73 (8) ◽  
pp. 4643-4652 ◽  
Author(s):  
Bianca Bauer ◽  
Stefan Moese ◽  
Sina Bartfeld ◽  
Thomas F. Meyer ◽  
Matthias Selbach

ABSTRACT Helicobacter pylori persistently infects the human stomach and can cause gastritis, gastric ulceration, and gastric cancer. The type IV secretion system (TFSS) of virulent H. pylori strains translocates the CagA protein, inducing the dephosphorylation of host cell proteins and leading to changes in the morphology or shape of AGS gastric epithelial cells. Furthermore, the TFSS is involved in the induction of proinflammatory cytokines. While the H. pylori genes required for TFSS function have been investigated systematically, little is known about possible host cell factors involved. We infected 19 different mammalian cell lines individually with H. pylori and analyzed CagA translocation, dephosphorylation of host cell proteins, chemokine secretion (interleukin-8 and macrophage inflammatory protein 2), and changes in cellular phenotypes. Our results demonstrate that not only bacterial but also host cell factors determine the cellular response to infection. The identification of such unknown host cell factors will add to our understanding of host-pathogen interactions and might help in the development of new therapeutic strategies.


2021 ◽  
Vol 22 (18) ◽  
pp. 10035
Author(s):  
Hyun Woo Kim ◽  
Hyun Jun Woo ◽  
Ji Yeong Yang ◽  
Jong-Bae Kim ◽  
Sa-Hyun Kim

Helicobacter pylori (H. pylori) is a bacterium known to infect the human stomach. It can cause various gastrointestinal diseases including gastritis and gastric cancer. Hesperetin is a major flavanone component contained in citrus fruits. It has been reported to possess antibacterial, antioxidant, and anticancer effects. However, the antibacterial mechanism of hesperetin against H. pylori has not been reported yet. Therefore, the objective of this study was to determine the inhibitory effects of hesperetin on H. pylori growth and its inhibitory mechanisms. The results of this study showed that hesperetin inhibits the growth of H. pylori reference strains and clinical isolates. Hesperetin inhibits the expression of genes in replication (dnaE, dnaN, dnaQ, and holB) and transcription (rpoA, rpoB, rpoD, and rpoN) machineries of H. pylori. Hesperetin also inhibits the expression of genes related to H. pylori motility (flhA, flaA, and flgE) and adhesion (sabA, alpA, alpB, hpaA, and hopZ). It also inhibits the expression of urease. Hespereti n downregulates major virulence factors such as cytotoxin-associated antigen A (CagA) and vacuolating cytotoxin A (VacA) and decreases the translocation of CagA and VacA proteins into gastric adenocarcinoma (AGS) cells. These results might be due to decreased expression of the type IV secretion system (T4SS) and type V secretion system (T5SS) involved in translocation of CagA and VacA, respectively. The results of this study indicate that hesperetin has antibacterial effects against H. pylori. Thus, hesperetin might be an effective natural product for the eradication of H. pylori.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Sasikala Muthusamy ◽  
Hau-Ming Jan ◽  
Ming-Yen Hsieh ◽  
Soumik Mondal ◽  
Wen-Chun Liu ◽  
...  

Abstract Background During autophagy defense against invading microbes, certain lipid types are indispensable for generating specialized membrane-bound organelles. The lipid composition of autophagosomes remains obscure, as does the issue of how specific lipids and lipid-associated enzymes participate in autophagosome formation and maturation. Helicobacter pylori is auxotrophic for cholesterol and converts cholesterol to cholesteryl glucoside derivatives, including cholesteryl 6ʹ-O-acyl-α-d-glucoside (CAG). We investigated how CAG and its biosynthetic acyltransferase assist H. pylori to escape host-cell autophagy. Methods We applied a metabolite-tagging method to obtain fluorophore-containing cholesteryl glucosides that were utilized to understand their intracellular locations. H. pylori 26695 and a cholesteryl glucosyltransferase (CGT)-deletion mutant (ΔCGT) were used as the standard strain and the negative control that contains no cholesterol-derived metabolites, respectively. Bacterial internalization and several autophagy-related assays were conducted to unravel the possible mechanism that H. pylori develops to hijack the host-cell autophagy response. Subcellular fractions of H. pylori-infected AGS cells were obtained and measured for the acyltransferase activity. Results The imaging studies of fluorophore-labeled cholesteryl glucosides pinpointed their intracellular localization in AGS cells. The result indicated that CAG enhances the internalization of H. pylori in AGS cells. Particularly, CAG, instead of CG and CPG, is able to augment the autophagy response induced by H. pylori. How CAG participates in the autophagy process is multifaceted. CAG was found to intervene in the degradation of autophagosomes and reduce lysosomal biogenesis, supporting the idea that intracellular H. pylori is harbored by autophago-lysosomes in favor of the bacterial survival. Furthermore, we performed the enzyme activity assay of subcellular fractions of H. pylori-infected AGS cells. The analysis showed that the acyltransferase is mainly distributed in autophago-lysosomal compartments. Conclusions Our results support the idea that the acyltransferase is mainly distributed in the subcellular compartment consisting of autophagosomes, late endosomes, and lysosomes, in which the acidic environment is beneficial for the maximal acyltransferase activity. The resulting elevated level of CAG can facilitate bacterial internalization, interfere with the autophagy flux, and causes reduced lysosomal biogenesis.


Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Irshad Sharafutdinov ◽  
Jakob Knorr ◽  
Delara Soltan Esmaeili ◽  
Steffen Backert ◽  
Nicole Tegtmeyer

Cortactin is an actin-binding protein and actin-nucleation promoting factor regulating cytoskeletal rearrangements in eukaryotes. Helicobacter pylori is a gastric pathogen that exploits cortactin to its own benefit. During infection of gastric epithelial cells, H. pylori hijacks multiple cellular signaling pathways, leading to the disruption of key cell functions. Two bacterial virulence factors play important roles in this scenario, the vacuolating cytotoxin VacA and the translocated effector protein CagA of the cag type IV secretion system (T4SS). Specifically, by overruling the phosphorylation status of cortactin, H. pylori alternates the activity of molecular interaction partners of this important protein, thereby manipulating the performance of cytoskeletal rearrangements, endosomal trafficking and cell movement. Based on shRNA knockdown and other studies, it was previously reported that VacA utilizes cortactin for its cellular uptake, intracellular travel and induction of apoptosis by a mitochondria-dependent mechanism, while CagA induces cell scattering, motility and elongation. To investigate the role of cortactin in these phenotypes in more detail, we produced a complete knockout mutant of cortactin in the gastric adenocarcinoma cell line AGS by CRISPR-Cas9. These cells were infected with H. pylori wild-type or various isogenic mutant strains. Unexpectedly, cortactin deficiency did not prevent the uptake and formation of VacA-dependent vacuoles, nor the induction of apoptosis by internalized VacA, while the induction of T4SS- and CagA-dependent AGS cell movement and elongation were strongly reduced. Thus, we provide evidence that cortactin is required for the function of internalized CagA, but not VacA.


2004 ◽  
Vol 72 (6) ◽  
pp. 3549-3560 ◽  
Author(s):  
M. M. M. Abdel-Latif ◽  
H. J. Windle ◽  
K. A. Fitzgerald ◽  
Y. S. Ang ◽  
D. Ní Eidhin ◽  
...  

ABSTRACT The early growth response 1 (Egr-1) transcription factor is rapidly induced by various stimuli and is implicated in the regulation of cell growth, differentiation, and gene expression. The aim of this study was to examine the effect of Helicobacter pylori on the expression of Egr-1 and Egr-1-regulated genes in gastric epithelial AGS cells. Egr-1 expression was assayed by immunoblotting and electrophoretic mobility shift assays using H. pylori-stimulated AGS cells. Transient transfection experiments with promoter-reporter constructs of CD44, ICAM-1, and CD95L were used for expression studies. H. pylori induced the expression of Egr-1 in gastric epithelial cell lines in a dose-dependent manner, with the rapid kinetics that are typical of this class of transcription factors. Immunohistochemical studies of biopsies revealed that Egr-1 expression is more abundant in H. pylori-positive patients than in uninfected individuals. Reporter-promoter transfection studies indicated that Egr-1 binding is required for the H. pylori-induced transcriptional promoter activity of the CD44, ICAM-1, and CD95L (APO-1/Fas) constructs. The blocking of egr-1 with an antisense sequence prevented H. pylori-induced Egr-1 and CD44 protein expression. The MEK1/2 signaling cascade participates in H. pylori-mediated Egr-1 expression, but the p38 pathway does not. The data indicate that H. pylori induces Egr-1 expression in AGS cells in vitro and that the Egr-1 protein is readily detectable in biopsies from H. pylori-positive subjects. These observations suggest that H. pylori-associated Egr-1 expression may play a role, in part, in H. pylori-induced pathology.


2019 ◽  
Vol 20 (5) ◽  
pp. 1169 ◽  
Author(s):  
Min Lee ◽  
Ji Yang ◽  
Yoonjung Cho ◽  
Hyun Woo ◽  
Hye Kwon ◽  
...  

H. pylori is classified as a group I carcinogen by WHO because of its involvement in gastric cancer development. Several reports have suggested anti-bacterial effects of menadione, although the effect of menadione on major virulence factors of H. pylori and H. pylori-induced inflammation is yet to be elucidated. In this study, therefore, we demonstrated that menadione has anti-H. pylori and anti-inflammatory effects. Menadione inhibited growth of H. pylori reference strains and clinical isolates. Menadione reduced expression of vacA in H. pylori, and translocation of VacA protein into AGS (gastric adenocarcinoma cell) was also decreased by menadione treatment. This result was concordant with decreased apoptosis in AGS cells infected with H. pylori. Moreover, cytotoxin-associated protein A (CagA) translocation into H. pylori-infected AGS cells was also decreased by menadione. Menadione inhibited expression of several type IV secretion system (T4SS) components, including virB2, virB7, virB8, and virB10, that are responsible for translocation of CagA into host cells. In particular, menadione inhibited nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation and thereby reduced expression of the proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α in AGS as well as in THP-1 (monocytic leukemia cell) cell lines. Collectively, these results suggest the anti-bacterial and anti-inflammatory effects of menadione against H. pylori.


2002 ◽  
Vol 70 (4) ◽  
pp. 2108-2120 ◽  
Author(s):  
Terry Kwok ◽  
Steffen Backert ◽  
Heinz Schwarz ◽  
Jürgen Berger ◽  
Thomas F. Meyer

ABSTRACT Although Helicobacter pylori has generally been considered an extracellular pathogen, a number of in vitro infection experiments and biopsy examinations have shown that it is capable of occasionally entering mammalian host cells. Here, we characterized this entry process by using AGS cells as a host cell model. In gentamicin protection-invasion assays, the number of H. pylori colonies recovered was lower than that for Salmonella enterica serovar Typhimurium X22, Escherichia coli expressing InvA, and Yersinia enterocolitica YO:9 grown at 25°C but higher than that for Neisseria gonorrhoeae VP1 and Y. enterocolitica YO:9 grown at 37°C. At the ultrastructural level, the entry process was observed to occur via a zipper-like mechanism. Internalized H. pylori was bound in tight LAMP-1-containing vacuoles in close association with condensed filamentous actin and tyrosine phosphorylation signals. Wortmannin, a potent inhibitor of phosphatidylinositol 3-kinase, and calphostin C, an inhibitor of protein kinase C, both inhibited the entry of H. pylori in a sensitive and dose-dependent manner; however, the level of entry was enhanced by sodium vanadate, an inhibitor of tyrosine phosphatases and ATPases. Furthermore, the cytokine tumor necrosis factor alpha antagonized the entry of H. pylori into AGS cells. Collectively, these results demonstrate that the entry of H. pylori into AGS cells occurs via a zipper-like mechanism which involves various host signal transduction events.


2016 ◽  
Vol 311 (5) ◽  
pp. G852-G858 ◽  
Author(s):  
Matthew G. Varga ◽  
M. Blanca Piazuelo ◽  
Judith Romero-Gallo ◽  
Alberto G. Delgado ◽  
Giovanni Suarez ◽  
...  

Helicobacter pylori ( H. pylori) induces chronic gastritis in humans, and infection can persist for decades. One H. pylori strain-specific constituent that augments disease risk is the cag pathogenicity island. The cag island encodes a type IV secretion system (T4SS) that translocates DNA into host cells. Toll-like receptor 9 (TLR9) is an innate immune receptor that detects hypo-methylated CpG DNA motifs. In this study, we sought to define the role of the H. pylori cag T4SS on TLR9-mediated responses in vivo. H. pylori strain PMSS1 or its cagE − mutant, which fails to assemble a T4SS, were used to infect wild-type or Tlr9 −/− C57BL/6 mice. PMSS1-infected Tlr9 −/− mice developed significantly higher levels of inflammation, despite similar levels of colonization density, compared with PMSS1-infected wild-type mice. These changes were cag dependent, as both mouse genotypes infected with the cagE − mutant only developed minimal inflammation. Tlr9 −/− genotypes did not alter the microbial phenotypes of in vivo-adapted H. pylori strains; therefore, we examined host immunological responses. There were no differences in levels of TH1 or TH2 cytokines in infected mice when stratified by host genotype. However, gastric mucosal levels of IL-17 were significantly increased in infected Tlr9 −/− mice compared with infected wild-type mice, and H. pylori infection of IL-17A −/− mice concordantly led to significantly decreased levels of gastritis. Thus loss of Tlr9 selectively augments the intensity of IL-17-driven immune responses to H. pylori in a cag T4SS-dependent manner. These results suggest that H. pylori utilizes the cag T4SS to manipulate the intensity of the host immune response.


2010 ◽  
Vol 78 (11) ◽  
pp. 4523-4531 ◽  
Author(s):  
Melanie L. Hutton ◽  
Maria Kaparakis-Liaskos ◽  
Lorinda Turner ◽  
Ana Cardona ◽  
Terry Kwok ◽  
...  

ABSTRACT Infection with Helicobacter pylori cag pathogenicity island (cagPAI)-positive strains is associated with more destructive tissue damage and an increased risk of severe disease. The cagPAI encodes a type IV secretion system (TFSS) that delivers the bacterial effector molecules CagA and peptidoglycan into the host cell cytoplasm, thereby inducing responses in host cells. It was previously shown that interactions between CagL, present on the TFSS pilus, and host α5β1 integrin molecules were critical for CagA translocation and the induction of cytoskeletal rearrangements in epithelial cells. As the α5β1 integrin is found in cholesterol-rich microdomains (known as lipid rafts), we hypothesized that these domains may also be involved in the induction of proinflammatory responses mediated by NOD1 recognition of H. pylori peptidoglycan. Indeed, not only did methyl-β-cyclodextrin depletion of cholesterol from cultured epithelial cells have a significant effect on the levels of NF-κB and interleukin-8 (IL-8) responses induced by H. pylori bacteria with an intact TFSS (P < 0.05), but it also interfered with TFSS-mediated peptidoglycan delivery to cells. Both of these effects could be restored by cholesterol replenishment of the cells. Furthermore, we demonstrated for the first time the involvement of α5β1 integrin in the induction of proinflammatory responses by H. pylori. Taking the results together, we propose that α5β1 integrin, which is associated with cholesterol-rich microdomains at the host cell surface, is required for NOD1 recognition of peptidoglycan and subsequent induction of NF-κB-dependent responses to H. pylori. These data implicate cholesterol-rich microdomains as a novel platform for TFSS-dependent delivery of bacterial products to cytosolic pathogen recognition molecules.


Sign in / Sign up

Export Citation Format

Share Document