scholarly journals Inhibitory control and problematic Internet-pornography use – The important balancing role of the insula

2020 ◽  
Vol 9 (1) ◽  
pp. 58-70
Author(s):  
Stephanie Antons ◽  
Brand Matthias

Abstract Background and aims Diminished control over a specific behavior is a core characteristic in addictive behaviors such as problematic Internet-pornography (IP) use. First studies suggest that a hyperactivity of the impulsive system is one reason for impulsive behaviors in the context of problematic IP use. The tripartite-process theory of addiction explains neurocognitive mechanisms beyond common dual-process theories in addictive behaviors. However, the role of the reflective and interoceptive system is still unresolved. Methods The study comprised a stop-signal task (SST) including neutral and pornographic images during fMRI and questionnaires to investigate associations between symptoms of problematic IP use, craving, and neural activity of the impulsive, reflective, and interoceptive system. We examined 28 heterosexual males with varying symptom severity of problematic IP use. Results Data indicates that individuals with more symptoms of problematic IP use showed better performance in the SST which was linked to decreased insula and inferior frontal gyrus activity during pornographic image processing. An increase in craving was associated with lower activity of the ventral striatum during pornographic image processing. The interoceptive system showed varying effects. Increased insula activity during inhibitory control and decreased activity during pornographic image processing were associated with higher inhibitory control performance. Discussion and Conclusion Effects of tolerance and motivational aspects may explain the better inhibitory control performance in individuals with higher symptom severity which was associated with differential activity of the interoceptive and reflective system. Diminished control over IP use presumably results from the interaction between the impulsive, reflective, and interoceptive systems.

2010 ◽  
Vol 22 (12) ◽  
pp. 2804-2812 ◽  
Author(s):  
Neil G. Muggleton ◽  
Chiao-Yun Chen ◽  
Ovid J. L. Tzeng ◽  
Daisy L. Hung ◽  
Chi-Hung Juan

Inhibitory control mechanisms are important in a range of behaviors to prevent execution of motor acts which, having been planned, are no longer necessary. Ready examples of this can be seen in a range of sports, such as cricket and baseball, where the choice between execution or inhibition of a bat swing must be made in a brief time interval. The role of the FEFs, an area typically described in relation to eye movement functions but also involved in visual processes, was investigated in an inhibitory control task using transcranial magnetic stimulation (TMS). A stop signal task with manual responses was used, providing measures of impulsivity and inhibitory control. TMS over FEF had no effect on response generation (impulsivity, indexed by go signal RT) but disrupted inhibitory control (indexed by stop signal RT). This is the first demonstration of a role for FEF in this type of task in normal subjects in a task which did not require eye movements and complements previous TMS findings of roles for pre-SMA and inferior frontal gyrus (IFG) in inhibitory control.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1602
Author(s):  
Christian Mancini ◽  
Giovanni Mirabella

The relationship between handedness, laterality, and inhibitory control is a valuable benchmark for testing the hypothesis of the right-hemispheric specialization of inhibition. According to this theory, and given that to stop a limb movement, it is sufficient to alter the activity of the contralateral hemisphere, then suppressing a left arm movement should be faster than suppressing a right-arm movement. This is because, in the latter case, inhibitory commands produced in the right hemisphere should be sent to the other hemisphere. Further, as lateralization of cognitive functions in left-handers is less pronounced than in right-handers, in the former, the inhibitory control should rely on both hemispheres. We tested these predictions on a medium-large sample of left- and right-handers (n = 52). Each participant completed two sessions of the reaching versions of the stop-signal task, one using the right arm and one using the left arm. We found that reactive and proactive inhibition do not differ according to handedness. However, we found a significant advantage of the right versus the left arm in canceling movements outright. By contrast, there were no differences in proactive inhibition. As we also found that participants performed movements faster with the right than with the left arm, we interpret our results in light of the dominant role of the left hemisphere in some aspects of motor control.


2012 ◽  
Vol 108 (2) ◽  
pp. 380-389 ◽  
Author(s):  
Weidong Cai ◽  
Jobi S. George ◽  
Frederick Verbruggen ◽  
Christopher D. Chambers ◽  
Adam R. Aron

Rapidly stopping action engages a network in the brain including the right presupplementary motor area (preSMA), the right inferior frontal gyrus, and the basal ganglia. Yet the functional role of these different regions within the overall network still remains unclear. Here we focused on the role of the right preSMA in behavioral stopping. We hypothesized that the underlying neurocognitive function of this region is one or more of setting up a stopping rule in advance, modulating response tendencies (e.g., slowing down in anticipation of stopping), and implementing stopping when the stop signal occurs. We performed two experiments with magnetic resonance imaging (MRI)–guided, event-related, transcranial magnetic stimulation(TMS), during the performance of variants of the stop signal task. In experiment 1 we show that stimulation of the right preSMA versus vertex (control site) slowed the implementation of stopping (measured via stop signal reaction time) but had no influence on modulation of response tendencies. In experiment 2, we showed that stimulation of the right preSMA slowed implementation of stopping in a mechanistically selective form of stopping but had no influence on setting up stopping rules. The results go beyond the replication of prior findings by showing that TMS of the right preSMA impairs stopping behavior (including a behaviorally selective form of stopping) through a specific disruption of the implementation of stopping. Future studies are required to establish whether this was due to stimulation of the right preSMA itself or because of remote effects on the wider stopping network.


2021 ◽  
Author(s):  
Alessandro Tomassini ◽  
Frank Hubert Hezemans ◽  
Rong Ye ◽  
Kamen Tsvetanov ◽  
Noham Wolpe ◽  
...  

Response inhibition is a core executive function enabling adaptive behaviour in dynamic environments. Human and animal models indicate that inhibitory control and control networks are modulated by noradrenaline, arising from the locus coeruleus. The integrity (i.e., cellular density) of the locus coeruleus noradrenergic system can be estimated from magnetization transfer sensitive magnetic resonance imaging, in view of neuromelanin present in noradrenergic neurons of older adults. Noradrenergic psychopharmacological studies indicate noradrenergic modulation of prefrontal and frontostriatal stopping-circuits in association with behavioural change. Here we test the noradrenergic hypothesis of inhibitory control, in healthy adults. We predicted that locus coeruleus integrity is associated with age-adjusted variance in response inhibition, mediated by changes in connectivity between frontal inhibitory control regions. In a preregistered analysis, we used magnetization transfer MRI images from N=63 healthy adults aged above 50 years who performed a stop-signal task, with atlas-based measurement of locus coeruleus contrast. We confirm that better response inhibition is correlated with locus coeruleus integrity and stronger connectivity between pre-supplementary motor area and right inferior frontal gyrus, but not volumes of the cortical regions. We confirmed a significant role of prefrontal connectivity in mediating the effect of individual differences in the locus coeruleus on behaviour, whereby this effect was moderated by age, over and above adjustment for the mean effects of age. Our results support the hypothesis that in normal populations, as in clinical settings, the locus coeruleus noradrenergic system regulates inhibitory control.


2018 ◽  
Vol 21 (6) ◽  
pp. 755-763 ◽  
Author(s):  
Bader Chaarani ◽  
Philip A Spechler ◽  
Alexandra Ivanciu ◽  
Mitchell Snowe ◽  
Joshua P Nickerson ◽  
...  

Abstract Introduction Research on cigarette smokers suggests cognitive and behavioral impairments. However, much remains unclear how the functional neurobiology of smokers is influenced by nicotine state. Therefore, we sought to determine which state, be it acute nicotine abstinence or satiety, would yield the most robust differences compared with nonsmokers when assessing neurobiological markers of nicotine dependence. Methods Smokers (N = 15) and sociodemographically matched nonsmokers (N = 15) were scanned twice using a repeated-measures design. Smokers were scanned after a 24-hour nicotine abstinence and immediately after smoking their usual brand cigarette. The neuroimaging battery included a stop-signal task of response inhibition and pseudocontinuous arterial spin labeling to measure cerebral blood flow (CBF). Whole-brain voxel-wise analyses of covariance were carried out on stop success and stop fail Stop-Signal Task contrasts and CBF maps to assess differences among nonsmokers, abstinent smokers, and satiated smokers. Cluster correction was performed using AFNI’s 3dClustSim to achieve a significance of p < .05. Results Smokers exhibited higher brain activation in bilateral inferior frontal gyrus, a brain region known to be involved in inhibitory control, during successful response inhibitions relative to nonsmokers. This effect was significantly higher during nicotine abstinence relative to satiety. Smokers also exhibited lower CBF in the bilateral inferior frontal gyrus than nonsmokers. These hypoperfusions were not different between abstinence and satiety. Conclusions These findings converge on alterations in smokers in prefrontal circuits known to be critical for inhibitory control. These effects are present, even when smokers are satiated, but the neural activity required to achieve performance equal to controls is increased when smokers are in acute abstinence. Implications Our multimodal neuroimaging study gives neurobiological insights into the cognitive demands of maintaining abstinence and suggests targets for assessing the efficacy of therapeutic interventions.


2016 ◽  
Vol 28 (1) ◽  
pp. 177-186 ◽  
Author(s):  
Ying Cai ◽  
Siyao Li ◽  
Jing Liu ◽  
Dawei Li ◽  
Zifang Feng ◽  
...  

Mounting evidence suggests that response inhibition involves both proactive and reactive inhibitory control, yet its underlying neural mechanisms remain elusive. In particular, the roles of the right inferior frontal gyrus (IFG) and inferior parietal lobe (IPL) in proactive and reactive inhibitory control are still under debate. This study aimed at examining the causal role of the right IFG and IPL in proactive and reactive inhibitory control, using transcranial direct current stimulation (tDCS) and the stop signal task. Twenty-two participants completed three sessions of the stop signal task, under anodal tDCS in the right IFG, the right IPL, or the primary visual cortex (VC; 1.5 mA for 15 min), respectively. The VC stimulation served as the active control condition. The tDCS effect for each condition was calculated as the difference between pre- and post-tDCS performance. Proactive control was indexed by the RT increase for go trials (or preparatory cost), and reactive control by the stop signal RT. Compared to the VC stimulation, anodal stimulation of the right IFG, but not that of the IPL, facilitated both proactive and reactive control. However, the facilitation of reactive control was not mediated by the facilitation of proactive control. Furthermore, tDCS did not affect the intraindividual variability in go RT. These results suggest a causal role of the right IFG, but not the right IPL, in both reactive and proactive inhibitory control.


2021 ◽  
Author(s):  
Kelsey Schultz ◽  
Bryan Mantell ◽  
Elliot Berkman ◽  
Nicole Swann

Models of addiction have identified deficits in inhibitory control, or the ability to inhibit inappropriate or unwanted behaviors, as one factor in the development and maintenance of addictive behaviors. Current literature supports disruption of the prefrontal circuits that mediate reactive inhibitory control processes (i.e. inhibition in response to sudden, unplanned changes in environmental demands) in substance use disorders, however, the relationship between disorders of addiction, such as nicotine dependence, and planned inhibitory processes is unclear. The goal of the present study was to examine the extent to which reactive and planned inhibitory processes are differentially disrupted in nicotine dependent individuals. To this aim, we employed a novel stop signal task that explicitly separates planned and reactive inhibitory processes and assessed (1) group differences in task performance between smokers and non- smokers and (2) the relationship between task performance and smoking behaviors within the smoking group. We found significant differences in stop times for both trial between groups as well as within groups. Analyses of stopping behavior in the smoking group revealed an inverse correlation between stop times on planned stop trials and a measure of nicotine dependence derived from the Fagerstrom Test of Nicotine Dependence and, surprisingly, showed that greater daily average consumption of nicotine was inversely related to stop times for both trial types. Finally, we found that recency of the last cigarette smoked was unrelated to stopping behavior.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kristen P. Morie ◽  
Marc N. Potenza

Cannabis is commonly used, and use may be increasing in the setting of increasing legalization and social acceptance. The scope of the effects of cannabis products, including varieties with higher or lower levels of Δ9-tetrahydrocannabinol (THC) or cannabidiol (CBD), on domains related to addictive behavior deserves attention, particularly as legalization continues. Cannabis use may impact neural underpinnings of cognitive functions linked to propensities to engage in addictive behaviors. Here we consider these neurocognitive processes within the framework of the dual-process model of addictions. In this mini-review, we describe data on the relationships between two main constituents of cannabis (THC and CBD) and neural correlates of reward processing, inhibitory control and working memory.


2021 ◽  
Vol 15 ◽  
Author(s):  
Monika Klírová ◽  
Veronika Voráčková ◽  
Jiří Horáček ◽  
Pavel Mohr ◽  
Juraj Jonáš ◽  
...  

Increased frontal midline theta activity generated by the anterior cingulate cortex (ACC) is induced by conflict processing in the medial frontal cortex (MFC). There is evidence that theta band transcranial alternating current stimulation (θ-tACS) modulates ACC function and alters inhibitory control performance during neuromodulation. Multi-electric (256 electrodes) high definition θ-tACS (HD θ-tACS) using computational modeling based on individual MRI allows precise neuromodulation targeting of the ACC via the medial prefrontal cortex (mPFC), and optimizes the required current density with a minimum impact on the rest of the brain. We therefore tested whether the individualized electrode montage of HD θ-tACS with the current flow targeted to the mPFC-ACC compared with a fixed montage (non-individualized) induces a higher post-modulatory effect on inhibitory control. Twenty healthy subjects were randomly assigned to a sequence of three HD θ-tACS conditions (individualized mPFC-ACC targeting; non-individualized MFC targeting; and a sham) in a double-blind cross-over study. Changes in the Visual Simon Task, Stop Signal Task, CPT III, and Stroop test were assessed before and after each session. Compared with non-individualized θ-tACS, the individualized HD θ-tACS significantly increased the number of interference words and the interference score in the Stroop test. The changes in the non-verbal cognitive tests did not induce a parallel effect. This is the first study to examine the influence of individualized HD θ-tACS targeted to the ACC on inhibitory control performance. The proposed algorithm represents a well-tolerated method that helps to improve the specificity of neuromodulation targeting of the ACC.


2019 ◽  
Author(s):  
Justin M. Fine ◽  
Maria E. Fini ◽  
Archana S. Mysore ◽  
William J. Tyler ◽  
Marco Santello

AbstractResponse inhibition is necessary for humans to safeguard against undesirable action consequences. Inhibitory control consistently recruits the prefrontal right inferior frontal gyrus (rIFG) and pre-supplementary motor area. Yet, whether inhibitory control is a defining function of rIFG, distinct from attentional orienting, remains widely debated. The issue emerges from previous studies reporting inhibitory and attentional demands both elicit rIFG activation. Here, we address this issue based on the proposition that inhibitory and attentional control are predicated on different network mechanisms. We derived and causally tested network mechanisms using EEG, dynamic causal modeling (DCM) and focused ultrasound stimulation in humans performing a Stop-Signal task. rIFG stimulation increased inhibitory performance and speed. DCM of evoked responses linked behavioral inhibition to rIFG top-down gain modulation of pre-SMA inhibitory populations. These results reconcile competing accounts of prefrontal cognitive control function, by identifying rIFG-based inhibitory mechanisms as distinct from other top-down cognitive control processes.


Sign in / Sign up

Export Citation Format

Share Document