Effects of acid treatment and composting on bones used as fertilizer

2007 ◽  
Vol 55 (1) ◽  
pp. 115-123
Author(s):  
D. Kovács ◽  
G. Kardos ◽  
G. Füleky

The aim of the work was to analyse the compostable properties of bone powder produced via different treatment methods and industrial conditions, and to study their effect on plant growth and phosphorus uptake. The bones were treated in water with different temperatures, bone-water ratios and treatment times. Further treatment was carried out with citric, nitric and sulphuric acid with different concentrations, temperatures, bone-water ratios and treatment times. Industrial bone powder was composted under model industrial conditions.The available phosphorus content of these materials was estimated using ryegrass ( Lolium perenne ) as indicator plant in a climatic chamber.The water-soluble phosphorus content of the bones increased in the citric acid and sulphuric acid treatment, depending on the water treatment conditions and the acid concentration. This increase amounted to about 30 times (0.32–8.51 mg/100 mg) compared to the water treatment.The results of the plant test demonstrated that the phophorus content of treated bone powder and compost was readily available to plants. The phosphorus content of the compost was available over a longer period.

2013 ◽  
Vol 59 (No. 12) ◽  
pp. 575-580 ◽  
Author(s):  
A. Nogalska ◽  
M. Zalewska

A four-year field experiment was conducted in north-eastern Poland. The aim of the study was to determine the direct and residual effects of increasing doses of meat and bone meal (MBM) on the available phosphorus content of soil and the total phosphorus content in crops above ground biomass or grain. Experimental factor I was MBM dose (1.0, 1.5, 2.0 and 2.5 t/ha/year, and 2.0, 3.0, 4.0 and 5.0 t/ha/every second year), and experimental factor II was the year of the study (four consecutive years). The application of increasing MBM doses to slightly acidic soil insignificantly decreased its pH, but it did not change soil classification. The use of MBM as a fertilizer increased the levels of available phosphorus, compared to the treatments with mineral fertilization. The grain of winter triticale and winter wheat and the green matter of maize contained higher concentrations of phosphorus after the MBM application, in comparison to the plants receiving mineral fertilization. Phosphorus uptake by winter wheat and maize plants (dry matter basis) was higher in treatments with MBM (in particular applied every second year) than in treatments with NPK fertilization. Irrespective of the frequency of MBM application, phosphorus uptake by winter rapeseed was considerably lower, compared to the control plants.


1999 ◽  
Vol 39 (1) ◽  
pp. 548
Author(s):  
T. Azizi ◽  
M.M. Rahman ◽  
S.S. Rahman

The matrix reactivity of sandstone formations with mixtures of hydrofluoric (HF) and hydrochloric (HC1) acids has been studied experimentally using natural cores. A systematic approach, which includes laboratory analysis and computer modelling, has been used to design and plan acid treatment for sandstone formations. Matrix reactivity to acid mixtures (reaction rate) and the relationship between the porosity and permeability are established by subjecting the Pacoota Sandstone core samples to different acid concentrations and injection rates at different temperatures. Based on material balance and reaction kinetics a numerical simulator has been developed and verified in the laboratory. This simulator can adequately predict spent-acid concentration and changes in porosity and permeability as a function of acid penetration depth for given acid treatment conditions (acid concentrations, injection rates and treatment temperatures).


2013 ◽  
Vol 726-731 ◽  
pp. 1309-1313
Author(s):  
Yun Jiang Liang ◽  
Min Jie Fu ◽  
Huan Liu ◽  
Guang Bo Xu

Freezing and thawing of soil is an abiotic stress, and has direct effect on chemical properties, physical properties and biological properties. In order to research effect of freezing and thawing on soil chemical properties, experiments of freeze-thaw cycle were simulated, and different forms phosphorus was measured. Results show that freezing and thawing made water-soluble and loosely combined phosphorus content decrease, but made calcium P content increase. Low-strength freezing and thawing cycle made aluminum P content increase, but made iron P content decrease. To soil of low accumulation phosphorus, low-strength freezing and thawing made occluded P content decrease and be released, but high-strength freezing and thawing made occluded P content increase. Inorganic phosphorus content had an ascending trend with enhancing of freezing and thawing, but organic phosphorus content had a descending trend. Under low-strength freezing and thawing, available P content of soil of low accumulation phosphorus had an ascending trend, and available P content of soil of high accumulation phosphorus had a descending trend, but available phosphorus content had no great changes when strength of freezing and thawing continued to increase.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3246 ◽  
Author(s):  
Jan Maslik ◽  
Ivo Kuritka ◽  
Pavel Urbanek ◽  
Petr Krcmar ◽  
Pavol Suly ◽  
...  

This study is focused on the development of water-based ITO nanoparticle dispersions and ink-jet fabrication methodology of an indium tin oxide (ITO) sensor for room temperature operations. Dimensionless correlations of material-tool-process variables were used to map the printing process and several interpretational frameworks were re-examined. A reduction of the problem to the Newtonian fluid approach was applied for the sake of simplicity. The ink properties as well as the properties of the deposited layers were tested for various nanoparticles loading. High-quality films were prepared and annealed at different temperatures. The best performing material composition, process parameters and post-print treatment conditions were used for preparing the testing sensor devices. Printed specimens were exposed to toluene vapours at room temperature. Good sensitivity, fast responses and recoveries were observed in ambient air although the n-type response mechanism to toluene is influenced by moisture in air and baseline drift was observed. Sensing response inversion was observed in an oxygen and moisture-free N2 atmosphere which is explained by the charge-transfer mechanism between the adsorbent and adsorbate molecules. The sensitivity of the device was slightly better and the response was stable showing no drifts in the protective atmosphere.


2007 ◽  
Vol 124-126 ◽  
pp. 1031-1034
Author(s):  
Bong Soo Jin ◽  
Bok Ki Min ◽  
Chil Hoon Doh

To find out suitable Si surface treatment and heat treatment conditions, acid treatment of Si wafer was done for lithium polysilicate electrolyte coating on Si wafer. In case of HCl treatment, the wet angle of a sample is 30o, which is the smallest wet angle of other acid in this experiment. Acid treatment time is 10 min, which is no more change of wet angle. Lithium polysilicate electrolyte was synthesized by hydrolysis and condensation of lithium silicate solution using perchloric acid. Thermal analysis of lithium polysilicate electrolyte shows the weight loss of ~23 % between 400 and 500 , which is due to the decomposition of LiClO4. The XRD patterns of the obtained lithium polysilicate electrolyte also show the decrement of LiClO4 peak at 400 . The optimum heat treatment temperature is below 400 , which is the suitable answer for lithium polysilicate electrolyte.


2012 ◽  
Vol 10 (5) ◽  
pp. 1565-1573 ◽  
Author(s):  
Pavel Coufalík ◽  
Pavel Krásenský ◽  
Marek Dosbaba ◽  
Josef Komárek

AbstractMercury forms in contaminated environmental samples were studied by means of sequential extraction and thermal desorption from the solid phase. The sequential extraction procedure involved the following fractions: water soluble mercury, mercury extracted in acidic conditions, mercury bound to humic substances, elemental Hg and mercury bound to complexes, HgS, and residual mercury. In addition to sequential extraction, the distribution of mercury species as a function of soil particles size was studied. The thermal desorption method is based on the thermal decomposition or desorption of Hg compounds at different temperatures. The following four species were observed: Hg0, HgCl2, HgS and Hg(II) bound to humic acids. The Hg release curves from artificial soils and real samples were obtained and their applicability to the speciation analysis was considered.


2021 ◽  
Vol 2021 ◽  
pp. 164-170
Author(s):  
H.K. Güler ◽  
F.C. Çallıoğlu

In this study, it was achieved that crosslinking of PVP/GEL nanofibers with two-steps. Crosslinking is a process highly important for water-soluble polymers in terms of application areas and mechanical properties. Firstly, crosslinking of PVP polymers experimental studies were carried out via heat treatment at different temperatures and times. Then, GEL polymers were crosslinked with GTA vapour at different times. Morphological analysis was carried out via SEM images and chemical characteristics were determined via FT-IR analysis. Moreover, after the crosslinking process, SD and WL values were calculated. All results showed that before crosslinking of SEM images, nanofibers were smooth, fine and without beads. The average fiber diameter is 196 nm and the fiber diameter distribution is quite uniform. After crosslinking of SEM images, it is expected that all nanowebs will turn from fibrous surfaces to membranous. Generally, SD and WL values decrease with crosslinking time increase. According to all of the SEM images, SD and WL values, optimum conditions were determined for PVP as 4 hours at 180oC and for GEL as 24 hours. Lastly, the presence of PVP and GEL polymers in the nanofiber structure was verified chemically with FT-IR analysis.


2021 ◽  
Author(s):  
Gerhard Soja ◽  
Dominik Tauber ◽  
Jan Höllrigl ◽  
Andrea Mayer ◽  
Christoph Pfeifer

<p>Food processing creates many by-products, and not all of them are used efficiently. Especially animal-based side products are frequently considered as waste with costly disposal requirements. For recycling of the nutrients contained in these residues, also under consideration of the hygienic specifications, pyrolysis can be used to create animal bone-based biochars. A lab-scale pyrolysis reactor (Pyreka 3.0) was used to produce biochars from different bone fractions of cattle and pigs after these bones had originated as waste from abbatoir operations. This study had the objective to investigate the potential of the bone chars to serve as a phosphorus (P) supply for agricultural purposes and to study the ammonium sorption potential of these chars.</p><p>The total phosphorus content of bones reached up to 140 mg/g. The water-soluble phosphorus content was in the range of 0.16 – 0.93 mg/g, an increase in pyrolysis temperature from 350 °C to 500 °C or 650 °C increased the water-soluble content by 13.3 or 12.2 % respectively. The citric acid soluble phosphorus content was between 1.75 – 2.19 mg/g. After pyrolysis temperatures of 350 °C, slightly more phosphorus dissolved in the coal products than at 500 °C (+2.7 %) and at 650 °C (+5.5 %).</p><p>The ammonium sorption capacity of biochars produced by varying pyrolytic processes was investigated by a series of sorption experiments. The removal of ammonium by the biochars from an aqueous ammonium solution was measured by using colorimetric determination of the ammonium content. The maximum ammonium sorption results were achieved by biochars produced from bovine heads and feet respectively at a temperature of 900°C and activated with H<sub>2</sub>O.</p><p>When exposed to a solution containing 50 mg/L of ammonium, these biochars adsorbed 1.23 and 1.14 mg ammonium/g biochar, respectively. The possibility to enrich abattoir waste biochars, which are depleted in nitrogen because of the pyrolysis process, with ammonium gained from a nitrogen-enriched biogas slurry produced from animal residues of the meat production process was tested using a substitute slurry made with ammonium sulfate. The highest absorbance rate using the substitute slurry containing 10 g/L ammonium was achieved by biochar made from bovine heads and resulted in 43.1 mg ammonium/g biochar.</p><p>This study shows that bone-based biochars enriched with nitrogen from e.g. biogas digestates have significant potential as an NP-fertilizer that supports the strategies of circular economy.</p>


Sign in / Sign up

Export Citation Format

Share Document