DESIGN AND PLANNING OF LOW PERMEABILITY RESERVOIR STIMULATION BY ACID TREATMENT: AN INTEGRATED LABORATORY ANALYSIS

1999 ◽  
Vol 39 (1) ◽  
pp. 548
Author(s):  
T. Azizi ◽  
M.M. Rahman ◽  
S.S. Rahman

The matrix reactivity of sandstone formations with mixtures of hydrofluoric (HF) and hydrochloric (HC1) acids has been studied experimentally using natural cores. A systematic approach, which includes laboratory analysis and computer modelling, has been used to design and plan acid treatment for sandstone formations. Matrix reactivity to acid mixtures (reaction rate) and the relationship between the porosity and permeability are established by subjecting the Pacoota Sandstone core samples to different acid concentrations and injection rates at different temperatures. Based on material balance and reaction kinetics a numerical simulator has been developed and verified in the laboratory. This simulator can adequately predict spent-acid concentration and changes in porosity and permeability as a function of acid penetration depth for given acid treatment conditions (acid concentrations, injection rates and treatment temperatures).

1995 ◽  
Vol 35 (1) ◽  
pp. 707
Author(s):  
S.S. Rahman ◽  
D. Nguyen ◽  
G.Y. Wang

Kinetic aspects of sandstone acidizing with mixtures of hydrofluoric (HF) and hydrochloric (HC1) acids have been studied experimentally using cores taken from a natural sandstone reservoir rock. The matrix reactivity and the resulting changes in porosity and permeability due to acid reactions were measured as a function of experimental conditions: (1) acid concentration, (2) injection rate and (3) temperature. The model parameters were correlated by a power law model. A numerical simulator was developed for linear flow to predict changes in core properties due to acidizing. Values from the simulator were verified by experimental results. This simulator was subsequently extended to radial flow, and therefore can be used to simulate field acid jobs of sandstone formations.


2007 ◽  
Vol 55 (1) ◽  
pp. 115-123
Author(s):  
D. Kovács ◽  
G. Kardos ◽  
G. Füleky

The aim of the work was to analyse the compostable properties of bone powder produced via different treatment methods and industrial conditions, and to study their effect on plant growth and phosphorus uptake. The bones were treated in water with different temperatures, bone-water ratios and treatment times. Further treatment was carried out with citric, nitric and sulphuric acid with different concentrations, temperatures, bone-water ratios and treatment times. Industrial bone powder was composted under model industrial conditions.The available phosphorus content of these materials was estimated using ryegrass ( Lolium perenne ) as indicator plant in a climatic chamber.The water-soluble phosphorus content of the bones increased in the citric acid and sulphuric acid treatment, depending on the water treatment conditions and the acid concentration. This increase amounted to about 30 times (0.32–8.51 mg/100 mg) compared to the water treatment.The results of the plant test demonstrated that the phophorus content of treated bone powder and compost was readily available to plants. The phosphorus content of the compost was available over a longer period.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 77-95
Author(s):  
Siqiao Yang ◽  
Haichao Li

Activated carbon, graphite, and GO/gelatin composite films were prepared by the blending method. The properties of composites were characterized by tensile strength (TS), elongation at break (EB), water vapour permeability (WVP), water-absorption ability, contact angle, scanning electron microscopy (SEM), and moisture at different temperatures. The properties of GO/gelatin composite films were better when each of three kinds of carbon materials were used as reinforcement phases and added into the matrix gelatin. The results showed that EB and TS of GO/gelatin composite films were both excellent. The moisture of GO/gelatin composite films was greater than the others. SEM micrographs showed that GO had better compatibility and dispersibility with gelatin than activated carbon and graphite. The water absorption of GO/gelatin composite films were low, at 15 °C and 25 °C, and the WVP was low at 35 °C. The WVP of GO/gelatin composite films was lower than the others at different temperatures. The contact angle of GO/gelatin composite films was larger than the others.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3246 ◽  
Author(s):  
Jan Maslik ◽  
Ivo Kuritka ◽  
Pavel Urbanek ◽  
Petr Krcmar ◽  
Pavol Suly ◽  
...  

This study is focused on the development of water-based ITO nanoparticle dispersions and ink-jet fabrication methodology of an indium tin oxide (ITO) sensor for room temperature operations. Dimensionless correlations of material-tool-process variables were used to map the printing process and several interpretational frameworks were re-examined. A reduction of the problem to the Newtonian fluid approach was applied for the sake of simplicity. The ink properties as well as the properties of the deposited layers were tested for various nanoparticles loading. High-quality films were prepared and annealed at different temperatures. The best performing material composition, process parameters and post-print treatment conditions were used for preparing the testing sensor devices. Printed specimens were exposed to toluene vapours at room temperature. Good sensitivity, fast responses and recoveries were observed in ambient air although the n-type response mechanism to toluene is influenced by moisture in air and baseline drift was observed. Sensing response inversion was observed in an oxygen and moisture-free N2 atmosphere which is explained by the charge-transfer mechanism between the adsorbent and adsorbate molecules. The sensitivity of the device was slightly better and the response was stable showing no drifts in the protective atmosphere.


2007 ◽  
Vol 124-126 ◽  
pp. 1031-1034
Author(s):  
Bong Soo Jin ◽  
Bok Ki Min ◽  
Chil Hoon Doh

To find out suitable Si surface treatment and heat treatment conditions, acid treatment of Si wafer was done for lithium polysilicate electrolyte coating on Si wafer. In case of HCl treatment, the wet angle of a sample is 30o, which is the smallest wet angle of other acid in this experiment. Acid treatment time is 10 min, which is no more change of wet angle. Lithium polysilicate electrolyte was synthesized by hydrolysis and condensation of lithium silicate solution using perchloric acid. Thermal analysis of lithium polysilicate electrolyte shows the weight loss of ~23 % between 400 and 500 , which is due to the decomposition of LiClO4. The XRD patterns of the obtained lithium polysilicate electrolyte also show the decrement of LiClO4 peak at 400 . The optimum heat treatment temperature is below 400 , which is the suitable answer for lithium polysilicate electrolyte.


2017 ◽  
Vol 17 (1) ◽  
pp. 17-20 ◽  
Author(s):  
J. Borowiecka-Jamrozek ◽  
J. Lachowski

Abstract This paper deals with computer modelling of the retention of a synthetic diamond particle in a metallic matrix produced by powder metallurgy. The analyzed sintered powders can be used as matrices for diamond impregnated tools. First, the behaviour of sintered cobalt powder was analyzed. The model of a diamond particle embedded in a metallic matrix was created using Abaqus software. The preliminary analysis was performed to determine the mechanical parameters that are independent of the shape of the crystal. The calculation results were compared with the experimental data. Next, sintered specimens obtained from two commercially available powder mixtures were studied. The aim of the investigations was to determine the influence of the mechanical and thermal parameters of the matrix materials on their retentive properties. The analysis indicated the mechanical parameters that are responsible for the retention of diamond particles in a matrix. These mechanical variables have been: the elastic energy of particle, the elastic energy of matrix and the radius of plastic zone around particle.


2007 ◽  
Vol 361-363 ◽  
pp. 787-790
Author(s):  
Sabina Beranič Klopčič ◽  
Irena Pribošič ◽  
Tomaž Kosmač ◽  
Ute Ploska ◽  
Georg Berger

The reactivity of CaTi4(PO4)6 (CTP) with alumina and yttria-stabilized zirconia (Y-TZP) ceramics was studied. CTP powder was synthesized and composites with commercial alumina or zirconia matrices containing 10 wt% of CTP were prepared. They were sintered at different temperatures and characterized using XRD, SEM, and EDX analyses. The results showed that the alumina/CTP and Y-TZP/CTP composites start to react below 1000 °C. In the alumina/CTP composite the first reaction product, detected at 970 °C, was AlPO4. At temperatures above 1280 °C TiO2 and CaTiO3 were also formed and no CTP peaks could be detected using XRD analysis. The composite sintered at 1500 °C consisted of Al2O3 matrix, AlPO4, TiO2, CaTiO3 and Al2TiO5. The reaction products formed in the Y-TZP/CTP composite at 970 °C were TiO2 and Ca2Zr7O16. At higher sintering temperatures, 1280 °C and above, CTP was no longer present, Ca2Zr7O16 decomposed, forming CaO2 and ZrO2, and Y2O3 was consumed to form YPO4. Consequently, upon cooling to room temperature the matrix phase transformed to monoclinic ZrO2. Based on these results it can be concluded that CTP is not a suitable bioactive second phase for the fabrication of CTP composites with alumina or zirconia matrices.


2018 ◽  
Vol 934 ◽  
pp. 100-104
Author(s):  
Yuan Ching Lin ◽  
Ji Wei Gong

In this investigation, the effects of different heat treatment conditions on the mechanical properties of high carbon tool steel (SK2) were explored. Experimental results indicated that immediately doing deep cryogenic treatment can effectively reduce retained austenite after quenching. The moment of the holding time for the cryogenic treatment was extended can promote the fine carbides precipitated, and thus increased its hardness. The results of X-ray diffraction showed that the carbides in the matrix included Fe3C and Fe7C3.The wear test results demonstrated that the specimen with Q-T1hr-C24hr-T1hr treatment has the highest wear resistance than the others, which was caused by the effect of several tempering processes to improve toughness of the matrix and to precipitate considerable quantities of the fine carbides.


2020 ◽  
Vol 110 ◽  
pp. 110-117
Author(s):  
Florentyna Akus-Szylberg ◽  
Andrzej Antczak ◽  
Janusz Zawadzki

Inhibitory compounds formation after liquid hot water (LHW) pretreatment of corn stover as an alternative to wood lignocellulosic feedstock for bioethanol production. Thus far, corn stover has been perceived as a promising lignocellulosic alternative to wood intended for bioethanol procurement, however it should be recognised also as a potential future component in a mixed biomass system. The aim of this research was to investigate the effect of applying different hydrothermal treatment conditions on the potential inhibitory compounds formation from corn stover. An analysis of selected inhibitory compounds formed after pretreatment performed at different temperatures (160°C, 175°C, 190°C and 205°C) was carried out. Furfural, simple sugars and lignin were some of the inhibitors examined with HPLC and UV-VIS spectrophotometric methods. Furthermore, the chemical composition of organic extracts obtained from native and LHW pretreated biomass was analyzed qualitatively with GC-MS method and inhibitory compounds like vanillin, sitosterol or syringol were detected. As a result of those investigations compared to enzymatic hydrolysis yield the temperature of 175°C was chosen as the most promising condition of corn stover LHW pretreatment in terms of the efficiency of the subsequent phases of bioethanol production.


2018 ◽  
Vol 45 (4) ◽  
pp. 257-274 ◽  
Author(s):  
Han-Ah Lee ◽  
Soohwang Seok ◽  
Sang-Hyeok Lee ◽  
Bum-Soon Lim

Sign in / Sign up

Export Citation Format

Share Document