Effect of polyethylene glycol induced drought stress on photosynthesis in two chickpea genotypes with different drought tolerance

2014 ◽  
Vol 65 (2) ◽  
pp. 178-188 ◽  
Author(s):  
A. Saglam ◽  
R. Terzi ◽  
M. Demiralay
F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 10
Author(s):  
Widi Sunaryo ◽  
Darnaningsih Darnaningsih ◽  
Nurhasanah Nurhasanah

Background: Water shortage due to natural and/or technical drought stress, widespread throughout Sumatra, Java, Sulawesi and Kalimantan islands, significantly reduces crop production. The development of varieties tolerant to drought stress is important since it is more effective rather than improving irrigation infrastructure to increase the sweet potato productivity. Methods: Selection and regeneration experiments assessing purple sweet potato callus tolerance of drought stress, simulated by polyethylene glycol (PEG), were conducted to generate new variant plants tolerant of drought stress. Sterile explants (leaf and petiole) generated from previous in vitro culture were inoculated to the Murishage and Skoog (MS) medium containing plant growth regulator combination as treatments to induce calli. The calli were then transferred to half-MS medium containing 0, 5, 10, 15 and 20% PEG as selection agent for drought tolerance. The surviving calli were regenerated in the MS medium containing 0, 0.5, 1 or 1.5 mg l-1 6-benzylaminopurine (BAP). The callus formation, growth and survivability during in vitro culture were measured. Results: Calli were successfully formed in almost all media containing 2,4-Dichlorophenoxyacetic acid (2,4-D ) with the concentration of 1, 2, 3 and 4 mg l-1 and BAP (concentration: 0.5 and 1 mg l-1), but the medium of MS + 2 mg l-1 2,4-D + 0.5 mg l-1 BAP resulted in the highest number of induced calli per treatment (mean=11.36), with the percentage of responsive explants standing at around 96%. The higher the concentration of PEG, the lower the number of surviving calli. At 20% PEG, only 54.42% calli survived. There were five plants successfully regenerated from the survived calli at 20% PEG, using MS medium containing 1.5 mg l-1 BAP. Conclusions: The experiment has successfully produced putative drought-tolerant plants by callus screening using PEG as drought-tolerance-selecting agent in purple sweet potato.


Author(s):  
C. Shobanadevi ◽  
R. Elangaimannan ◽  
K. Vadivel

Background: Drought is one of the abiotic factor. It is considered to be a moderate loss of water. Water is main source involving for all activities of plant growth throughout the crop plants. Seed germination is considered as one of the first and foremost fundamental life stages of a plant, where the success in growth and yield is also depending on this stage. Methods: An experiment was conducted in order to study the effect of different concentrations (i.e., 0, 10, 20 and 30%) of polyethylene glycol (PEG) stress on germination and early growth stages of 28 genotypes of black gram. Different germination indices such as germination percent, radical length, plumule length, along with drought parameters like drought tolerance index was measured. Conclusion: Results showed significant differences among the cultivars at each drought stress level and significant decrease was observed in germination, length of radical and plumule and radical and plumule dry matter parameters, among all the genotypes genotypes Nirmal 7, NRIB 002, MDU 1, VBN 8 and NUL 7 VISWAS showed their efficiency in terms of germination and germination attributes to with stand to the drought conditions. 


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
SYARIFAH AINI PASARIBU ◽  
Mohammad Basyuni ◽  
EDISON PURBA ◽  
YAYA HASANAH

Abstract. Pasaribu SA, Basyuni M, Purba E, Hasanah Y. 2021. Drought tolerance selection of GT1 rubber seedlings with the addition of polyethylene glycol (PEG) 6000. Biodiversitas 22: 394-400. Tolerance of the rootstock of rubber to drought stress is not optimal. The root system can therefore be used as an indicator of drought tolerance to inhibit the growth of the plant. A good root system of rubber rootstocks is thought to help the plants acquire greater resistance to drought stress. Polyethylene glycol 6000 osmotic solution controls the water potential in the growing medium. This study aimed to analyze the effect of PEG 6000 osmotic solution (0%; 7.5%; and 15% concentration) on rubber seedlings leading to the development of morphological characters and sensitivity index. GT1 (Gondang Tapen 1) rubber seeds to be used as planting material were collected from the seed source garden of PT Socfin Indonesia. The study was carried out from January to February 2019, using a non-factorial randomized block design. The morphological characters observed were tapped root length, shoot height, the increased rate of taproot length, shoot height increase rate, ratio of taproot length, and shoot height. Data were analyzed using analysis of variance, discriminant, and drought stress sensitivity index. The results showed that the addition of PEG 6000 in planting media in vitro significantly influenced the character of the rate of increase of taproot length. The sensitivity index of taproot increase rate and the ratio of taproot length and shoot height was moderate at 7.5% levely contrast, the addition of PEG 6000 in planting media in vitro did not significantly impact it. The present study suggested that the rate of increase of taproot length was a distinguishing character showing the initial tolerance level of the GT1 seedlings to drought.


2020 ◽  
Vol 48 (1) ◽  
pp. 21-25
Author(s):  
Chunxiang Zhao ◽  
Li Jiang ◽  
Xiang Shi ◽  
Lei Wang

Mucilage is considered to play an important role in the survival of seeds in harsh desert environments. Nepeta micrantha is an ephemeral plant of the Gurbantungut Desert, China. The outer surface of N. micrantha nutlets contains a layer of mucilage. We hypothesised that mucilage improves germination during and after osmotic stress. Germination of both intact and demucilaged nutlets under different polyethylene glycol (PEG)-simulated drought stress was tested at the optimal light and temperature conditions. Germination of intact and demucilaged nutlets decreased with an increase in PEG concentration. However, there were no significant differences in germination between intact and demucilaged nutlets at the same PEG concentration, except at 15% PEG. Recovery percentage and final germination of intact nutlets were considerably higher than that of demucilaged nutlets after treatment with 15% PEG. These findings demonstrate that mucilage contributes significantly to drought tolerance ofN. micrantha nutlets by decreasing germination under moderate osmotic stress and aiding germination after the release of this stress.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 10
Author(s):  
Widi Sunaryo ◽  
Darnaningsih Darnaningsih ◽  
Nurhasanah Nurhasanah

Background: Water shortage due to natural and/or technical drought stress, widespread throughout Sumatra, Java, Sulawesi and Kalimantan islands, significantly reduces crop production. The development of varieties tolerant to drought stress is important since it is more effective rather than improving irrigation infrastructure to increase the sweet potato productivity. Methods: Selection and regeneration experiments assessing purple sweet potato callus tolerance of drought stress, simulated by polyethylene glycol (PEG), were conducted to generate new variant plants tolerant of drought stress. Sterile explants (leaf and petiole) generated from previous in vitro culture were inoculated to the Murishage and Skoog (MS) medium containing plant growth regulator combination as treatments to induce calli. The calli were then transferred to half-MS medium containing 0, 5, 10, 15 and 20% PEG as selection agent for drought tolerance. The surviving calli were regenerated in the MS medium containing 0, 0.5, 1 or 1.5 mg l-1 6-benzylaminopurine (BAP). The callus formation, growth and survivability during in vitro culture were measured. Results: Calli were successfully formed in almost all media containing 2,4-Dichlorophenoxyacetic acid (2,4-D ) with the concentration of 1, 2, 3 and 4 mg l-1 and BAP (concentration: 0.5 and 1 mg l-1), but the medium of MS + 2 mg l-1 2,4-D + 0.5 mg l-1 BAP resulted in the highest number of induced calli per treatment (mean=11.36), with the percentage of responsive explants standing at around 96%. The higher the concentration of PEG, the lower the number of surviving calli. At 20% PEG, only 54.42% calli survived. There were five plants successfully regenerated from the survived calli at 20% PEG, using MS medium containing 1.5 mg l-1 BAP. Conclusions: The experiment has successfully produced putative drought-tolerant plants by callus screening using PEG as drought-tolerance-selecting agent in purple sweet potato.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 540a-540
Author(s):  
K.J. Prevete ◽  
R.T. Fernandez

Three species of herbaceous perennials were tested on their ability to withstand and recover from drought stress periods of 2, 4, and 6 days. Eupatorium rugosum and Boltonia asteroides `Snowbank' were chosen because of their reported drought intolerance, while Rudbeckia triloba was chosen based on its reported drought tolerance. Drought stress began on 19 Sept. 1997. Plants were transplanted into the field the day following the end of each stress period. The effects of drought on transpiration rate, stomatal conductance, and net photosynthetic rate were measured during the stress and throughout recovery using an infrared gas analysis system. Leaf gas exchange measurements were taken through recovery until there were no differences between the stressed plants and the control plants. Transpiration, stomatal conductance, and photosynthesis of Rudbeckia and Boltonia were not affected until 4 days after the start of stress. Transpiration of Eupatorium decreased after 3 days of stress. After rewatering, leaf gas exchange of Boltonia and Rudbeckia returned to non-stressed levels quicker than Eupatorium. Growth measurements were taken every other day during stress, and then weekly following transplanting. Measurements were taken until a killing frost that occurred on 3 Nov. There were no differences in the growth between the stressed and non-stressed plants in any of the species. Plants will be monitored throughout the winter, spring, and summer to determine the effects of drought on overwintering capability and regrowth.


2021 ◽  
Author(s):  
Baozhu Li ◽  
Ruonan Fan ◽  
Guiling Sun ◽  
Ting Sun ◽  
Yanting Fan ◽  
...  

Abstract Background and aims As drought threatens the yield and quality of maize (Zea mays L.), it is important to dissect the molecular basis of maize drought tolerance. Flavonoids, participate in the scavenging of oxygen free radicals and alleviate stress-induced oxidative damages. This study aims to dissect the function of flavonoids in the improvement of maize drought tolerance. Methods Using far-infrared imaging screening, we previously isolated a drought overly insensitivity (doi) mutant from an ethyl methanesulfonate (EMS)-mutagenized maize library and designated it as doi57. In this study, we performed a physiological characterization and transcriptome profiling of doi57 in comparison to corresponding wild-type B73 under drought stress. Results Under drought stress, doi57 seedlings displayed lower leaf-surface temperature (LST), faster water loss, and better performance in growth than B73. Transcriptome analysis reveals that key genes involved in flavonoid biosynthesis are enriched among differentially expressed genes in doi57. In line with these results, more flavonols and less hydrogen peroxide (H2O2) were accumulated in guard cells of doi57 than in those of B73 with the decrease of soil water content (SWC). Moreover, the capacity determined from doi57 seedling extracts to scavenge oxygen free radicals was more effective than that of B73 under the drought treatment. Additionally, doi57 seedlings had higher photosynthetic rates, stomatal conductance, transpiration rates, and water use efficiency than B73 exposed to drought stress, resulting in high biomass and greater root/shoot ratios in doi57 mutant plants. Conclusion Flavonoids may facilitate maize seedling drought tolerance by lowering drought-induced oxidative damage as well regulating stomatal movement.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 821
Author(s):  
Csaba Mátyás ◽  
František Beran ◽  
Jaroslav Dostál ◽  
Jiří Čáp ◽  
Martin Fulín ◽  
...  

Research Highlights: Data of advanced-age provenance tests were reanalyzed applying a new approach, to directly estimate the growth of populations at their original sites under individually generated future climates. The results revealed the high resilience potential of fir species. Background and Objectives: The growth and survival of silver fir under future climatic scenarios are insufficiently investigated at the xeric limits. The selective signature of past climate determining the current and projected growth was investigated to analyze the prospects of adaptive silviculture and assisted transfer of silver fir populations, and the introduction of non-autochthonous species. Materials and Methods: Hargreaves’ climatic moisture deficit was selected to model height responses of adult populations. Climatic transfer distance was used to assess the relative drought stress of populations at the test site, relating these to the past conditions to which the populations had adapted. ClimateEU and ClimateWNA pathway RCP8.5 data served to determine individually past, current, and future moisture deficit conditions. Besides silver fir, other fir species from South Europe and the American Northwest were also tested. Results: Drought tolerance profiles explained the responses of transferred provenances and predicted their future performance and survival. Silver fir displayed significant within-species differentiation regarding drought stress response. Applying the assumed drought tolerance limit of 100 mm relative moisture deficit, most of the tested silver fir populations seem to survive their projected climate at their origin until the end of the century. Survival is likely also for transferred Balkan fir species and for grand fir populations, but not for the Mediterranean species. Conclusions: The projections are less dramatic than provided by usual inventory assessments, considering also the resilience of populations. The method fills the existing gap between experimentally determined adaptive response and the predictions needed for management decisions. It also underscores the unique potential of provenance tests.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


Sign in / Sign up

Export Citation Format

Share Document