scholarly journals Transformation of Nitrogen Fertilizers in Greenhouse Experiments

2002 ◽  
Vol 51 (1-2) ◽  
pp. 147-156 ◽  
Author(s):  
Erika Nótás ◽  
K. Debreczeni ◽  
K. Fischl ◽  

The primary (1 st year) and the after-effects (2 nd , 3 rd year) of N fertilizers (KNO 3 , NH 4 Cl) on the soil-plant-atmosphere system were studied in a three-year greenhouse pot experiment with and without maize plants. The two- and three-year balances of the fertilizer N uptake and gaseous N losses were also analyzed. The cumulative values of the gaseous losses showed a similar trend in all years, significant differences were not obtained. On the basis of the three-year balance, the gaseous loss in the planted and unplanted pots was 18-22% and about 37-39%, respectively. Consequently, there was a 50% decrease in denitrificated gaseous losses of fertilizer N due to plant N uptake. The cumulative gaseous loss, calculated by the difference method, was significantly higher in cases of KNO 3 applications than in NH 4 Cl treatments, as an assumed  consequence of the intensive denitrification. It was found that the gaseous loss was not influenced by soil moisture.  In contrast to the gaseous losses, the values of plant N uptake and soil mineral N content showed significant differences in the years studied, as a result of the quick transformation of mineral N to organic N, the non-complete homogenization of the total soil amount, the seasonal climatic differences in the greenhouse during the years studied, and consequently the different microbiological activity. The plant N uptake was found to depend significantly on the fertilizer N form. Results obtained by the difference method and the 15 N-tracer technique were very similar. In the case of KNO 3 treatment and higher soil moisture (WHC = 80%) plant N uptake was more intensive, ranging between 48-57% (calculated by the difference method), and 35-51% (calculated by the 15 N- tracer method) in the first year (1993). It can be concluded that 60-100% of the fertilizer N was used from the soil by plant uptake and gaseous losses, which depends mainly on the treatments and the soil moisture during the first year. These values changed between 7-17% in the 1 st year after-effect and between 1-5% in the 2 nd year after-effect.

1993 ◽  
Vol 73 (4) ◽  
pp. 503-513
Author(s):  
J. M. Carefoot ◽  
R. L. Conner ◽  
J. B. Bole

The effect of timing of application on the recovery of fertilizer N applied to irrigated soft white wheat (Triticum aestivum L.) was investigated in a 3-yr field study and a 1-yr lysimeter study using 15N-labelled urea and ammonium nitrate. Fertilizer N treatments consisted of a check and 90 kg ha−1 applied as preplant N, postplant N or combinations. Under a controlled watering regime in the lysimeter experiment, timing of N application had no effect on plant growth parameters. In the field studies, although grain yield was not affected by N timing, grain N concentration increased from 17.9 to 19.6 g kg−1 as the proportion of postplant N was increased from 0 to 100%. Plant N uptake was greater when all of the N was applied postplant than preplant (means = 124.5 and 114.2 kg ha−1, respectively) in the field studies. Plant recovery of fertilizer N (FNR) by the difference method was greater when all of the fertilizer N was applied postplant (43.7%) man preplant (28.6%) in the field experiments. With a negative apparent added N interaction (ANI), the FNR was less by the difference method than by the 15N method. However, with a positive ANI, FNR was less by the 15N method than by the difference method. There was a greater difference between methods as the proportion of N applied as postplant N increased. Key words: Fertilizer N timing, irrigation, soft white wheat, nitrogation, fertilizer N recovery


2020 ◽  
Author(s):  
Pauline Sophie Rummel ◽  
Reinhard Well ◽  
Birgit Pfeiffer ◽  
Klaus Dittert ◽  
Sebastian Floßmann ◽  
...  

<p>Growing plants affect soil moisture, mineral N and organic C (C<sub>org</sub>) availability in soil and may thus play an important role in regulating denitrification. The availability of the main substrates for denitrification (C<sub>org</sub> and NO<sub>3</sub><sup>-</sup>) is controlled by root activity and higher denitrification activity in rhizosphere soils has been reported. We hypothesized that (I) plant N uptake governs NO<sub>3</sub><sup>-</sup> availability for denitrification leading to increased N<sub>2</sub>O and N<sub>2</sub> emissions, when plant N uptake is low due to smaller root system or root senescence. (II) Denitrification is stimulated by higher C<sub>org</sub> availability from root exudation or decaying roots increasing total gaseous N emissions while decreasing their N<sub>2</sub>O/(N<sub>2</sub>O+N<sub>2</sub>) ratios.</p><p>We tested these assumptions in a double labeling pot experiment with maize (Zea mays L.) grown under three N fertilization levels S / M / L (no / moderate / high N fertilization) and with cup plant (Silphium perfoliatum L., moderate N fertilization). After 6 weeks, all plants were labeled with 0.1 g N kg<sup>-1</sup> (Ca(<sup>15</sup>NO<sub>3</sub>)<sub>2</sub>, 60 at%), and the <sup>15</sup>N tracer method was applied to estimate plant N uptake, N<sub>2</sub>O and N<sub>2</sub> emissions. To link denitrification with available C in the rhizosphere, <sup>13</sup>CO<sub>2</sub> pulse labeling (5 g Na<sub>2</sub><sup>13</sup>CO<sub>3</sub>, 99 at%) was used to trace C translocation from shoots to roots and its release by roots into the soil. CO<sub>2</sub> evolving from soil was trapped in NaOH for δ<sup>13</sup>C analyses, and gas samples were taken for analysis of N<sub>2</sub>O and N<sub>2</sub> from the headspace above the soil surface every 12 h.</p><p>Although pots were irrigated, changing soil moisture through differences in plant water uptake was the main factor controlling daily N<sub>2</sub>O+N<sub>2</sub> fluxes, cumulative N emissions, and N<sub>2</sub>O production pathways. In addition, total N<sub>2</sub>O+N<sub>2</sub> emissions were negatively correlated with plant N uptake and positively with soil N concentrations. Recently assimilated C released by roots (<sup>13</sup>C) was positively correlated with root dry matter, but we could not detect any relationship with cumulative N emissions. We anticipate that higher C<sub>org</sub> availability in pots with large root systems did not lead to higher denitrification rates as NO<sub>3</sub><sup>-</sup> was limited due to plant uptake. In conclusion, plant growth controlled water and NO<sub>3</sub><sup>-</sup> uptake and, subsequently, formation of anaerobic hotspots for denitrification.</p>


1995 ◽  
Vol 124 (1) ◽  
pp. 1-9 ◽  
Author(s):  
G. S. Francis ◽  
R. J. Haynes ◽  
P. H. Williams

SUMMARYTwo field experiments at Canterbury, New Zealand during 1991–93 investigated the effect of the timing of ploughing a 4-year-old ryegrass/white clover pasture and the effect of two winter cover crops on subsequent N mineralization, nitrate leaching and growth and N uptake of the following wheat crops.Net N mineralization of organic N (of plant and soil origin) increased with increased fallow period between ploughing and leaching. The total amount of N accumulated in the profile by the start of winter ranged from 107 to 131 and from 42 to 45 kg N/ha for fallow treatments started in March and May respectively. Winter wheat (planted in May) had no effect on mineral N contents by the start of winter, whereas greenfeed (GF) oats (planted in March) significantly reduced the mineral N content in one year.Cumulative leaching losses over the first winter after ploughing-in pasture varied markedly between years in relation to rainfall amount and distribution. Leaching losses were greater from the March fallow (72–106 kg N/ha) than the May fallow treatments (8–52 kg N/ha). Winter wheat did not reduce leaching losses in either year. GF oats did not reduce losses in 1991/92, but losses in 1992/93, when major drainage events occurred late in the winter, were only c. 40% of those under fallow.Incorporation of a large amount (> 7 t/ha dry matter) of pasture or GF oat residue in spring depressed yield and total N uptake of the following spring wheat, largely due to net N immobilization which could be overcome by the application of fertilizer N.First-year treatments had very little residual effect in the second year. Leaching losses over the second winter (mean 142 kg N/ha) were largely unaffected by the extent of first year leaching losses. Second year leaching losses were greater than first year losses, probably due to the greater amount of mineral N at depth in the soil before the start of the second winter.


1989 ◽  
Vol 37 (2) ◽  
pp. 143-155 ◽  
Author(s):  
J.J. Neeteson

The performances of 3 different N fertilizer recommendation methods were retrospectively tested with data obtained from 150 trials with sugarbeet and 98 trials with potatoes in the Netherlands in 1973-82. The recommendations consisted of applying a fixed N rate in all situations (126 kg N/ha for sugarbeet and 286 kg N/ha for potatoes), the current Dutch method, which takes only the amount of mineral N present in the soil in early spring into account, and a refinement of the current method, which also takes soil type and recent applications of organic manures into account. On av., significantly lower amounts of fertilizer N were recommended with the current method. The difference from the other methods was on av. 25 kg N/ha for sugarbeet and 30 kg N/ha for potatoes. With the refined current method the highest crop yields were obtained but the difference from the other methods was not significant and averaged only 0.3-0.4 t/ha for sugarbeet and 0.1-0.2 t/ha for potatoes. The recovery of fertilizer N by the potato tubers was 2% higher with the current method than with the other methods. Based on these findings it is concluded that the current recommendation method is preferable to the other methods. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1995 ◽  
Vol 125 (1) ◽  
pp. 25-37 ◽  
Author(s):  
J. Webb ◽  
R. Sylvester-Bradley ◽  
J. D. Wafford

SUMMARYAt 14 sites in the UK, spring wheat (Triticum aestivum) cv. Tonic, was sown on three or four dates at each site between October and March in the 1988/89, 1989/90 and 1990/91 seasons. Responses to spring-applied fertilizer N over the range 0–320 kg/ha were determined. Earlier sowing did not increase uptake of soil N by the crop. Fertilizer N increased grain N offtake by between 25 and 140 kg/ha and yield by between 0·3 and 5·5 t/ha, although grain yield was less responsive to fertilizer N at later sowing dates. Apparent recovery of fertilizer N (AFR) also decreased as sowing was delayed but there was no effect of delayed sowing on the amount of grain produced from each kg of fertilizer N recovered. Because fertilizer N recovery decreased with later sowing, the amount of fertilizer N needed to produce the optimum economic grain yield was not reduced. Neither AFR nor optimum fertilizer (Nopt) was related to optimum yield. Regression of Nopt on the difference between optimum yield and yield without fertilizer N (△y) explained 77% of the variance in Nopt. There was an inverse relationship between △y and soil mineral N (SMN) in spring; regression of △y, on SMN in spring accounted for 29% of the variance in △y Current advisory systems which adjust economic fertilizer N recommendations according to anticipated yield are not justified by these results. Moreover the adjustments made, based on yield expectation, appear about three times as large as those needed to minimize residues of fertilizer N left unrecovered by the crop and to reduce the risk of nitrate leaching in the following winter.


1989 ◽  
Vol 37 (2) ◽  
pp. 129-141 ◽  
Author(s):  
J.J. Neeteson ◽  
H.J.C. Zwetsloot

A statistical analysis was performed to investigate if, and to what extent, the response of sugarbeet and potatoes to fertilizer N depended on the amount of mineral N already present in the soil, soil type, and prior application of organic manures. For this purpose the results of 150 field trials with sugarbeet and 98 with potatoes were used. The analysis was focussed on the within-block stratum of variation in yield, where regression models were fitted to describe the response to N. For both sugarbeet and potatoes the best fit was obtained when not only fertilizer N was taken into account, but also soil mineral N, soil type and prior application of organic manures. The response to fertilizer N was weaker as the amount of soil mineral N was larger. The optimum amount of fertilizer N plus soil mineral N required was larger on sandy soils than on loam and clay soils. The difference was about 20 kg N/ha for sugarbeet and 100 kg N/ha for potatoes. When organic manures were applied prior to the application of fertilizer N, the optimum for both sugarbeet and potatoes was 15-50 N/ha lower than without application of organic manures. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Author(s):  
Olivia H. Cousins ◽  
Trevor P. Garnett ◽  
Amanda Rasmussen ◽  
Sacha J. Mooney ◽  
Ronald J. Smernik ◽  
...  

AbstractDue to climate change, water availability will become increasingly variable, affecting nitrogen (N) availability. Therefore, we hypothesised watering frequency would have a greater impact on plant growth than quantity, affecting N availability, uptake and carbon allocation. We used a gravimetric platform, which measures the unit of volume per unit of time, to control soil moisture and precisely compare the impact of quantity and frequency of water under variable N levels. Two wheat genotypes (Kukri and Gladius) were used in a factorial glasshouse pot experiment, each with three N application rates (25, 75 and 150 mg N kg−1 soil) and five soil moisture regimes (changing water frequency or quantity). Previously documented drought tolerance, but high N use efficiency, of Gladius as compared to Kukri provides for potentially different responses to N and soil moisture content. Water use, biomass and soil N were measured. Both cultivars showed potential to adapt to variable watering, producing higher specific root lengths under low N coupled with reduced water and reduced watering frequency (48 h watering intervals), or wet/dry cycling. This affected mineral N uptake, with less soil N remaining under constant watering × high moisture, or 48 h watering intervals × high moisture. Soil N availability affected carbon allocation, demonstrated by both cultivars producing longer, deeper roots under low N. Reduced watering frequency decreased biomass more than reduced quantity for both cultivars. Less frequent watering had a more negative effect on plant growth compared to decreasing the quantity of water. Water variability resulted in differences in C allocation, with changes to root thickness even when root biomass remained the same across N treatments. The preferences identified in wheat for water consistency highlights an undeveloped opportunity for identifying root and shoot traits that may improve plant adaptability to moderate to extreme resource limitation, whilst potentially encouraging less water and nitrogen use.


2001 ◽  
Vol 136 (1) ◽  
pp. 15-33 ◽  
Author(s):  
R. SYLVESTER-BRADLEY ◽  
D. T. STOKES ◽  
R. K. SCOTT

Experiments at three sites in 1993, six sites in 1994 and eight sites in 1995, mostly after oilseed rape, tested effects of previous fertilizer N (differing by 200 kg/ha for 1993 and 1994 and 300 kg/ha for 1995) and date of sowing (differing by about 2 months) on soil mineral N and N uptake by winter wheat cv. Mercia which received no fertilizer N. Soil mineral N to 90 cm plus crop N (‘soil N supply’; SNS) in February was 103 and 76 kg/ha after large and small amounts of previous fertilizer N respectively but was not affected by date of sowing. Previous fertilizer N seldom affected crop N in spring because sowing was too late for N capture during autumn, but it did affect soil mineral N, particularly in the 60–90 cm soil horizon, presumably due to over-winter leaching. Tillering generally occurred in spring, and was delayed but not diminished by later sowing. Previous fertilizer N increased shoot survival more than it increased shoot production. Final shoot number was affected by previous fertilizer N, but not by date of sowing. Overall, there were 29 surviving tillers/g SNS.N uptakes at fortnightly intervals from spring to harvest at two core sites were described well by linear rates. The difference between sowings in the fitted date with 10 kg/ha crop N was 1 month; these dates were not significantly affected by previous fertilizer. N uptake rates were increased by both previous fertilizer N and late sowing. Rates of N uptake related closely to soil mineral N in February such that ‘equivalent recovery’ was achieved in late May or early June. At one site there was evidence that most of the residue from previous fertilizer N had moved below 90 cm by February, but N uptake was nevertheless increased. Two further ‘satellite’ sites behaved similarly. Thus at 14 out of 17 sites, N uptake until harvest related directly and with approximate parity to soil mineral N in February (R2 = 0·79), a significant intercept being in keeping with an atmospheric contribution of 20–40 kg/ha N at all sites.It is concluded that, on retentive soils in the UK, SNS in early spring was a good indicator of N availability throughout growth of unfertilized wheat, because the N residues arising from previous fertilizer mineralized before analysis, yet remained largely within root range. The steady rates of soil mineral N recovery were taken as being dependent on progressively deeper root development. Thus, even if soil mineral N equated with a crop's N requirement, fresh fertilizer applications might be needed before ‘equivalent recovery’ of soil N, to encourage the earlier processes of tiller production and canopy expansion. The later process of grain filling was sustained by continued N uptake (mean 41 kg/ha) coming apparently from N leached to the subsoil (relating to previous fertilizer use) as well as from sources not related to previous fertilizer use; significant net mineralization was apparent in some subsoils.


1994 ◽  
Vol 122 (3) ◽  
pp. 385-391 ◽  
Author(s):  
K. F. Ng Kee Kwong ◽  
J. Deville

SUMMARYThe patterns of N uptake and dry matter synthesis by sugarcane (Saccharum hybrid spp.) were studied at four locations in Mauritius with 15N–labelled ammonium sulphate (100 kg N/ha) applied either in a single dressing in September or in two split applications in September and the following February. More than 80% of the total N recovered at harvest (100–120 kgN/ha) was absorbed by the sugarcane during an active uptake period from October to January. Split application prolonged this active N uptake until April only and had no effect on dry matter accumulation. While total Nabsorbed by above-ground sugarcane showed no decline over time, 10–20 kg N/ha of the 15N–labelled N was lost from the green tops even when the N was applied on two occasions. The fertilizer N losses from above-ground sugarcane were, however, not evident when fertilizer N recovery with time was studied by the difference method. In view of the observed losses of fertilizer N from the aerial parts of sugarcane, measurement of fertilizer N recovery at harvest by the N isotope dilution technique underestimates fertilizer N uptake by sugarcane and attributes too large a fraction of N loss to denitrification/volatilization of NH3.


Sign in / Sign up

Export Citation Format

Share Document