GnRH agonist active immunization influences gonadotropin receptor expression in pituitary gland, uterine development and secretion of peripheral reproduction hormones in female mice

2011 ◽  
Vol 5 (4) ◽  
pp. 243-253
Author(s):  
Suocheng Wei ◽  
Zhuandi Gong ◽  
Min Wei ◽  
Kun Xie ◽  
Jiuhai Li
2020 ◽  
Vol 27 (1) ◽  
pp. 1-26
Author(s):  
Marwan Habiba ◽  
Rosemarie Heyn ◽  
Paola Bianchi ◽  
Ivo Brosens ◽  
Giuseppe Benagiano

ABSTRACT There is emerging evidence that early uterine development in humans is an important determinant of conditions such as ontogenetic progesterone resistance, menstrual preconditioning, defective deep placentation and pre-eclampsia in young adolescents. A key observation is the relative infrequency of neonatal uterine bleeding and hormone withdrawal at birth. The origin of the uterus from the fusion of the two paramesonephric, or Müllerian, ducts was described almost 200 years ago. The uterus forms around the 10th week of foetal life. The uterine corpus and the cervix react differently to the circulating steroid hormones during pregnancy. Adult uterine proportions are not attained until after puberty. It is unclear if the endometrial microbiome and immune response—which are areas of growing interest in the adult—play a role in the early stages of uterine development. The aim is to review the phases of uterine development up until the onset of puberty in order to trace the origin of abnormal development and to assess current knowledge for features that may be linked to conditions encountered later in life. The narrative review incorporates literature searches of Medline, PubMed and Scopus using the broad terms individually and then in combination: uterus, development, anatomy, microscopy, embryology, foetus, (pre)-puberty, menarche, microbiome and immune cells. Identified articles were assessed manually for relevance, any linked articles and historical textbooks. We included some animal studies of molecular mechanisms. There are competing theories about the contributions of the Müllerian and Wolffian ducts to the developing uterus. Endometrium features are suggestive of an oestrogen effect at 16–20 weeks gestation. The discrepancy in the reported expression of oestrogen receptor is likely to be related to the higher sensitivity of more recent techniques. Primitive endometrial glands appear around 20 weeks. Features of progestogen action are expressed late in the third trimester. Interestingly, progesterone receptor expression is higher at mid-gestation than at birth when features of endometrial maturation are rare. Neonatal uterine bleeding occurs in around 5% of neonates. Myometrial differentiation progresses from the mesenchyme surrounding the endometrium at the level of the cervix. During infancy, the uterus and endometrium remain inactive. The beginning of uterine growth precedes the onset of puberty and continues for several years after menarche. Uterine anomalies may result from fusion defects or atresia of one or both Müllerian ducts. Organogenetic differentiation of Müllerian epithelium to form the endometrial and endocervical epithelium may be independent of circulating steroids. A number of genes have been identified that are involved in endometrial and myometrial differentiation although gene mutations have not been demonstrated to be common in cases of uterine malformation. The role, if any, of the microbiome in relation to uterine development remains speculative. Modern molecular techniques applied to rodent models have enhanced our understanding of uterine molecular mechanisms and their interactions. However, little is known about functional correlates or features with relevance to adult onset of uterine disease in humans. Prepubertal growth and development lends itself to non-invasive diagnostics such as ultrasound and MRI. Increased awareness of the occurrence of neonatal uterine bleeding and of the potential impact on adult onset disease may stimulate renewed research in this area.


2018 ◽  
Vol 53 ◽  
pp. 103-109
Author(s):  
Sabine Schäfer-Somi ◽  
Duygu Kaya ◽  
Mahmut Sözmen ◽  
Semra Kaya ◽  
Selim Aslan

Neurosignals ◽  
2013 ◽  
Vol 21 (3-4) ◽  
pp. 229-239 ◽  
Author(s):  
Brad R.S. Broughton ◽  
Vanessa H. Brait ◽  
Elizabeth Guida ◽  
Seyoung Lee ◽  
Thiruma V. Arumugam ◽  
...  

Reproduction ◽  
2005 ◽  
Vol 129 (4) ◽  
pp. 463-472 ◽  
Author(s):  
Takashi Shimizu ◽  
Izumi Ohshima ◽  
Manabu Ozawa ◽  
Satoko Takahashi ◽  
Atsushi Tajima ◽  
...  

Heat stress inhibits ovarian follicular development in mammalian species. We hypothesized that heat stress inhibits the function of follicular granulosa cells and suppresses follicular development. To test this, immature female rats were injected with pregnant mare serum gonadotropin (PMSG) at 48 h after the start of temperature treatment (control: 25 °C, 50% RH; heat stress: 35 °C, 70% Relative Humidity). The ovaries and granulosa cells of follicles at different developmental stages were analyzed for gonadotropin receptor levels and aromatase activity; estradiol levels were measured in follicular fluid. Before injection, heat stress diminished only the amount of FSH receptor on granulosa cells of antral follicles. During PMSG-stimulated follicular development, heat stress strongly inhibited gonadotropin receptor levels and aromatase activity in granulosa cells, and estradiol levels in the follicular fluid of early antral, antral and preovulatory follicles. To examine apoptosis and mRNA levels of bcl-2 and bax in granulosa cells, follicles harvested 48 h after PMSG injection were cultured in serum-free conditions. Heat-stressed granulosa cells showed a time-dependent increase in apoptosis. The bcl-2 mRNA levels were similar in control and heat-stressed granulosa cells; bax mRNA levels were increased in heat-stressed granulosa cells. According to these results, heat stress inhibits expression of gonadotropin receptors in granulosa cells and attenuates estrogenic activity of growing follicles, granulosa cells of heat-stressed follicles are susceptible to apoptosis, and the bcl2/bax system is not associated with heat-stress-induced apoptosis of granulosa cells. Our study suggests that decreased numbers and function of granulosa cells may cause ovarian dysfunction in domestic animals in summer.


Hypertension ◽  
2018 ◽  
Vol 72 (Suppl_1) ◽  
Author(s):  
Jessica L Faulkner ◽  
Simone Kennard ◽  
Galina Antonova ◽  
Zsolt Bagi ◽  
Iris Jaffe ◽  
...  

Endocrine ◽  
2016 ◽  
Vol 57 (2) ◽  
pp. 314-325 ◽  
Author(s):  
Rosario Pivonello ◽  
Marlijn Waaijers ◽  
Johan M. Kros ◽  
Claudia Pivonello ◽  
Cristina de Angelis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document