Reliability and Physics Failure of Stretchable Organic Solar Cells

MRS Advances ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 21-26 ◽  
Author(s):  
O. K. Oyewole ◽  
D. O. Oyewole ◽  
M. G. Zebaze Kana ◽  
W. O. Soboyejo

ABSTRACTOrganic solar (OPV) cells are cheap electronics that can replace the widely used high cost silicon-based electronics for electricity generation. They are cheap because of the easy techniques involved in their fabrication processes and they can be produced to cover a large surface area. However, the current low performance of organic electronics has been traced to failure due to interfacial adhesion problems, material processes, and service conditions. Therefore, transportation of charge carriers across the bulk heterojunction system of OPV cells becomes very difficult in the presence of these flaws. In this paper a combined experimental and computational technique is used to study the reliability and physics failure of stretchable OPV cells. Interfacial adhesion energies in the layered structures of OPV cells are measured and compared with theoretical estimated energies. The limit stresses/strains applied on layered OPV cells during service condition are estimated using critical values of the measured interfacial adhesion. The results obtained are, therefore, explained to improve the design of reliable OPV cells.

Soft Matter ◽  
2021 ◽  
Author(s):  
Li Quan ◽  
Stephanie S. Lee ◽  
Dilhan M. Kalyon

Organic solar cells (OSCs) containing an active layer consisting of a nanostructured blend of a conjugated polymer like poly(3-hexylthiophene) (P3HT) and an electron acceptor have the potential of competing against silicon-based photovoltaic panels.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 586
Author(s):  
Ana-Gianina Gereanu ◽  
Camillo Sartorio ◽  
Aurelio Bonasera ◽  
Giuliana Giuliano ◽  
Sebastiano Cataldo ◽  
...  

This work deals with the interfacial mixing mechanism of picoliter (pL)-scale droplets produced by sequential inkjet printing of organic-based inks onto ITO/PET surfaces at a moderately high Weber number (~101). Differently from solution dispensing processes at a high Bond number such as spin coating, the deposition by inkjet printing is strictly controlled by droplet velocity, ink viscosity, and surface tension. In particular, this study considers the interfacial mixing of droplets containing the most investigated donor/acceptor couple for organic solar cells, i.e., poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM), showing how low-viscosity and low-surface energy inks can be leveraged for the fabrication of an interface suitable for a pseudo-planar heterojunction (pseudo-PHJ) organic solar cell (OSC) that is a convenient alternative to a bulk heterojunction (BHJ) OSC. The resulting thin-film morphology and molecular organization at the P3HT/PCBM interface are investigated, highlighting the roles of dissolution-driven molecular recirculation. This report represents a first step toward the sequential inkjet printing fabrication of pseudo-PHJ OSCs at low consumption of solvents/chemicals.


Author(s):  
Venkatesh Piradi ◽  
Feng Yan ◽  
Xunjin Zhu ◽  
Wai-Yeung Raymond Wong

Organic solar cells (OSCs) have been considered as a promising cost-effective alternative to silicon-based solar cell counterparts due to their lightweight, mechanical flexibility, and easy fabrication features. Over the past...


2016 ◽  
Vol 845 ◽  
pp. 224-227 ◽  
Author(s):  
Danila Saranin ◽  
Marina Orlova ◽  
Sergey Didenko ◽  
Oleg Rabinovich ◽  
Andrey Kryukov

This article presents the results of research output voltage characteristics of solar cells on an organic basis with the use of P3HT: PCBM system. There were produced organic solar cells in a coating in air, current-voltage characteristics were measured. It was determined the characteristic influence of a substrate cleaning and annealing temperature of layers applied on fill factor and conversion efficiency.


2016 ◽  
Vol 16 (4) ◽  
pp. 3248-3253 ◽  
Author(s):  
Eiji Itoh ◽  
Yoshinori Goto ◽  
Yusuke Saka ◽  
Katsutoshi Fukuda

We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethylammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface. The series resistance across the ITO/ESL interface in the inverted BHJ cell was successfully reduced using an interfacial layer with a positively charged surface potential with respect to ITO base electrode. The positive dipole in PEI and the electronic charge phenomena at the electrophoretic deposited TN (ED-TN) films on ITO contributed to the reduction of the contact resistance at the electrode interface. The surface potential measurement revealed that the energy alignment by the transfer of electronic charges from the ED-TN to the base electrodes. The insertion of the ESL with a large positive surface potential reduced the potential barrier for the electron injection at ITO/TN interface and it improved the photovoltaic properties of the inverted cell with an ITO/TN/active layer/MoOx/Ag structure.


Sign in / Sign up

Export Citation Format

Share Document