The evaluation of the composition dependence of fracture toughness of Al3Nb alloys by using micro-size fracture testing

MRS Advances ◽  
2017 ◽  
Vol 2 (26) ◽  
pp. 1405-1410
Author(s):  
Nobuhiro Matsuzaki ◽  
Ken-ichi Ikeda ◽  
Seiji Miura ◽  
Nobuaki Sekido ◽  
Takahito Ohmura

ABSTRACTAl3Nb is known as a high oxidation resistant material, while it is quite brittle. As the fracture toughness of Al3Nb single crystal and its dependence on the composition are not obtained, the micro-sized fracture testing proposed by Suzuki et al. was performed. Al3Nb single crystal micron-order size cantilevers with a chevron-notch were fabricated in a grain of two-phase polycrystalline alloys by using FIB (Focused Ion Beam). From the load-displacement curves during the bending by a nanoindenter, the average value of fracture toughness of Nb-rich Al3Nb is evaluated to be 2.90 MPam1/2, while the fracture toughness of Al-rich Al3Nb is also evaluated to be 2.82 MPam1/2. From this result, the fracture toughness of Al3Nb is less dependent on its Al/Nb ratio. Furthermore the fracture toughness of Al3 (Nb, V) was evaluated to be 2.82 MPam1/2.The fracture toughness of Al3Nb is seemingly insensitive to V addition.

2008 ◽  
Vol 1128 ◽  
Author(s):  
Daisuke Miyaguchi ◽  
Masaaki Otsu ◽  
Kazuki Takashima ◽  
Masao Takeyama

AbstractA microscale fracture testing technique has been applied to examine the fracture properties of lamellar in TiAl PST crystals. Micro-sized cantilever specimens with a size ˜ 10×20×50 μm3 were prepared from Ti-48Al two-phase single crystals (PST) lamellar by focused ion beam (FIB) machining. Notches with a width of 0.5 μm and a depth of 5 μm were also introduced into the specimens by FIB. Two types of notch directions (interlamellar and translamellar) were selected when introducing the notches. Fracture tests were successfully completed using a mechanical testing machine for micro-sized specimens at room temperature. The fracture toughness (KQ) values of the interlamellar type specimens were obtained in the range 1.5–3.6 MPam1/2, while those of the translamellar specimens were 5.0–8.1 MPam1/2. These fracture toughness values are lower than those having been previously reported in conventional TiAl PST samples. For macro-sized specimens, extrinsic toughening mechanisms, including shear ligament bridging, act in the crack wake, and the crack growth resistance increases rapidly with increasing length of crack wake for lamellar structured TiAl alloys. In contrast, the crack length in microsized specimens is only 2–3 μm. This indicates that extrinsic toughening mechanisms are not activated in micro-sized specimens. This also indicates that intrinsic fracture toughness can be evaluated using microscale fracture toughness testing.


2013 ◽  
Vol 1514 ◽  
pp. 119-124 ◽  
Author(s):  
Alisa Stratulat ◽  
Steve G. Roberts

ABSTRACTMicromechanical testing of focused ion beam (FIB) machined cantilevers was used to study oxidised grain boundaries in Ni-alloy 600. The Ni-alloy 600 samples were exposed in simulated PWR primary water at 325°C for 4500h with a hydrogen partial pressure of 30kPa. The FIB was used to machine small cantilever beams at the selected sites in the Ni alloy 600, cut so that the beam contained a selected grain boundary close to the built-in end. The FIB was also used to make a pre-crack, 700 nm deep, on the grain boundary. Cantilevers were loaded at the free end using a nanoindenter. Cantilevers milled in the un-oxidised sample yielded, and did not fracture. The specimens containing oxidised grain boundaries fractured at the boundary after small amounts of plasticity. Load vs. displacement data were used to calculate the fracture toughness of the oxidised grain boundaries. The fracture toughness associated with fracture of grain boundary oxide for these cantilevers was in the range 0.73-1.82MPa (m)1/2, with an average value of 1.3MPa (m)1/2. We believe this to be the first time the fracture toughness of an oxidised grain boundary has been determined.


2014 ◽  
Vol 922 ◽  
pp. 264-269 ◽  
Author(s):  
Masahiro Inomoto ◽  
Norihiko L. Okamoto ◽  
Haruyuki Inui

The deformation behavior of the Γ (gamma) phase in the Fe-Zn system has been investigated via room-temperature compression tests of single-crystal micropillar specimens fabricated by the focused ion beam method. Trace analysis of slip lines indicates that {110} slip occurs for the specimens investigated in the present study. Although the slip direction has not been uniquely determined, the slip direction might be <111> in consideration of the crystal structure of the Γ phase (bcc).


2018 ◽  
Vol 1 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Zhongdu He ◽  
Zongwei Xu ◽  
Mathias Rommel ◽  
Boteng Yao ◽  
Tao Liu ◽  
...  

In order to investigate the damage in single-crystal 6H-silicon carbide (SiC) in dependence on ion implantation dose, ion implantation experiments were performed using the focused ion beam technique. Raman spectroscopy and electron backscatter diffraction were used to characterize the 6H-SiC sample before and after ion implantation. Monte Carlo simulations were applied to verify the characterization results. Surface morphology of the implantation area was characterized by the scanning electron microscope (SEM) and atomic force microscope (AFM). The ‘swelling effect’ induced by the low-dose ion implantation of 1014−1015 ions cm−2 was investigated by AFM. The typical Raman bands of single-crystal 6H-SiC were analysed before and after implantation. The study revealed that the thickness of the amorphous damage layer was increased and then became saturated with increasing ion implantation dose. The critical dose threshold (2.81 × 1014−3.26 × 1014 ions cm−2) and saturated dose threshold (˜5.31 × 1016 ions cm−2) for amorphization were determined. Damage formation mechanisms were discussed, and a schematic model was proposed to explain the damage formation.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2871
Author(s):  
Qiuling Wen ◽  
Xinyu Wei ◽  
Feng Jiang ◽  
Jing Lu ◽  
Xipeng Xu

Sapphire substrates with different crystal orientations are widely used in optoelectronic applications. In this work, focused ion beam (FIB) milling of single-crystal sapphire with A-, C-, and M-orientations was performed. The material removal rate (MRR) and surface roughness (Sa) of sapphire with the three crystal orientations after FIB etching were derived. The experimental results show that: The MRR of A-plane sapphire is slightly higher than that of C-plane and M-plane sapphires; the Sa of A-plane sapphire after FIB treatment is the smallest among the three different crystal orientations. These results imply that A-plane sapphire allows easier material removal during FIB milling compared with C-plane and M-plane sapphires. Moreover, the surface quality of A-plane sapphire after FIB milling is better than that of C-plane and M-plane sapphires. The theoretical calculation results show that the removal energy of aluminum ions and oxygen ions per square nanometer on the outermost surface of A-plane sapphire is the smallest. This also implies that material is more easily removed from the surface of A-plane sapphire than the surface of C-plane and M-plane sapphires by FIB milling. In addition, it is also found that higher MRR leads to lower Sa and better surface quality of sapphire for FIB etching.


Author(s):  
Mohan Prasad Manoharan ◽  
Amit Desai ◽  
Amanul Haque

Thin film specimens of titanium - titanium nitride multilayer erosion resistant coating were prepared using liftout technique in Focused Ion Beam - Scanning Electron Microscope (SEM). The fracture toughness of the thin film specimen was measured in situ using a cantilever bending experiment in SEM to be 11.33 MPa/m0.5, twice as much as conventional TiN coatings. Ti–TiN multi-layer coatings are part of a new class of advanced erosion resistant coatings and this paper discusses an experimental technique to measure the fracture toughness of these coatings.


2009 ◽  
Vol 24 (3) ◽  
pp. 844-852 ◽  
Author(s):  
M.J. Cordill ◽  
N.R. Moody ◽  
S.V. Prasad ◽  
J.R. Michael ◽  
W.W. Gerberich

In ductile metals, sliding contact induces plastic deformation resulting in subsurfaces, the mechanical properties of which are different from those of the bulk. This article describes a novel combination of nanomechanical test methods and analysis techniques to evaluate the mechanical behavior of the subsurfaces generated underneath a wear surface. In this methodology, nanoscratch techniques were first used to generate wear patterns as a function of load and number of cycles using a Hysitron TriboIndenter. Measurements were made on a (001) single crystal plane along two crystallographic directions, <001> and <011>. Nanoindentation was then used to measure mechanical properties in each wear pattern. The results on the (001) single crystal nickel plane showed that there was a strong increase in hardness with increasing applied load that was accompanied by a change in surface deformation. The amount of deformation underneath the wear patterns was examined from focused ion beam cross-sections of the wear patterns.


2005 ◽  
Vol 297-300 ◽  
pp. 292-298 ◽  
Author(s):  
Satoru Koyama ◽  
Kazuki Takashima ◽  
Yakichi Higo

Reliability is one of the most critical issues for designing practical MEMS devices. In particular, the fracture toughness of micro-sized MEMS elements is important, as micro/nano-sized flaws can act as a crack initiation sites to cause failure of such devices. Existing MEMS devices commonly use single crystal silicon. Fracture toughness testing upon micro-sized single crystal silicon was therefore carried out to examine whether a fracture toughness measurement technique, based upon the ASTM standard, is applicable to 1/1000th sized silicon specimens. Notched cantilever beam type specimens were prepared by focused ion beam machining. Two specimens types with different notch orientations were prepared. The notch plane/direction were (100)/[010], and (110)/[ _ ,110], respectively. Fracture toughness tests were carried out using a mechanical testing machine for micro-sized specimens. Fracture has been seen to occur in a brittle manner in both orientations. The provisional fracture toughness values (KQ) are 1.05MPam1/2 and 0.96MPam1/2, respectively. These values meet the micro-yielding criteria for plane strain fracture toughness values (KIC). Fracture toughness values for the orientations tested are of the same order as values in the literature. The results obtained in this investigation indicate that the fracture toughness measurement method used is applicable for micro-sized components of single crystal silicon in MEMS devices.


2003 ◽  
Vol 795 ◽  
Author(s):  
H. D. Espinosa ◽  
B. Peng

ABSTRACTThis paper presents a novel Membrane Deflection Fracture Experiment (MDFE) to investigate the fracture toughness of MEMS and other advanced materials in thin film form. It involves the stretching of freestanding thin-film membranes, in a fixed-fixed configuration, containing pre-existing cracks. The fracture behavior of ultrananocrystalline diamond (UNCD), a material developed at Argonne National Laboratory, is investigated to illustrate the methodology. When the fracture initiates from sharp cracks, produced by indentation, the fracture toughness was found to be 4.7 MPa m1/2. When the fracture initiates from blunt notches with radii about 100 nm, machined by focused ion beam (FIB), the mean value of the apparent fracture toughness was found to be 7.2 MPa m1/2. Comparison of these two values, using the model proposed by Drory et al. [9], provides a correction factor of 2/3, which corresponds to a mean value of ρ/2x=1/2.


Sign in / Sign up

Export Citation Format

Share Document