Exploration of Local cellulosic-fiber; its Modification and Potential use by the Industry

MRS Advances ◽  
2018 ◽  
Vol 3 (34-35) ◽  
pp. 2015-2025
Author(s):  
N. Mokaloba ◽  
V. P. Kommula

ABSTRACTDemand for newer, stronger, stiffer, yet lighter-weight and environmental friendly (biodegradable) materials in the fields such as automobile for non-structural applications are ever increasing. The principal reasons for using natural (cellulosic) fibers is they possess several attractive properties such their economic feasibility, enhanced sustainability, good specific mechanical properties, and desirable aspect ratio for good performance after melt-processing. Natural fiber composite materials are now being rapidly utilized in automobile industries, and they have become the forefront of research and development activity. An interesting alternative for reinforcing soft polymeric matrices with short fibers is the use of cellulose fibers which show remarkable reinforcing effects in thermoplastics such as polypropylene. The current study made an attempt to investigate the suitability of sisal fibers for automobile industry for non-structural and low-strength interior applications. In this work native sisal fibers were extracted and the effect of alkali treatment on their morphological, tensile, moisture absorption and thermal properties were studied. Scanning electron micrographs indicated roughening of the surface of the fiber strands due to the removal of the hemicellulose layer on alkali treatment. The maximum weight-gain for the composite prepared from treated fibers was 2.12 %, while that for the composite prepared from untreated fiber was 4.33 %. From the thermograms, the results indicate initial degradation for the treated fiber to have improved from 174 °C to 230 °C (56 °C shift) when compared to the untreated fiber. This fiber has competitive advantages when evaluated with other natural fibers. A polymer composite was processed from the chemically modified fiber, profiled against equivalent material systems in Ashby material property charts exhibited its suitability for light, low strength and low flexure material applications which can use a potential replacement of fibres being used currently.

2018 ◽  
Vol 25 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Niharika Mohanta ◽  
Samir K. Acharya

AbstractThis experimental study was conducted to investigate the effect of NaOH concentration and treatment time on the flexural properties ofLuffa cylindricafiber-reinforced epoxy composites. Significant improvement (up to 84.92%) in the flexural properties for the treated fiber composite compared with the untreated fiber composite was observed. Both treated and untreated fiber composites were then subjected to different environmental treatments (saline water, distilled water, and subzero temperature). To find out the changes in flexural strength immediately after treatment, the same test was carried out on the composites. Degradation in the flexural strength of both treated and untreated fiber composites, when subjected to environmental treatments, was observed. They were found within the range of 2%–20% and were found to be least in subzero treatment. The SEM micrograph indicates that alkali treatment is effective in improving the adhesion between the fiber and matrix.


Author(s):  
Faris M. AL-Oqla

The available potential plant waste could be worthy material to strengthen polymers to make sustainable products and structural components. Therefore, modeling the natural fiber polymeric-based composites is currently required to reveal the mechanical performance of such polymeric green composites for various green products. This work numerically investigates the effect of various fiber types, fiber loading, and reinforcement conditions with different polymer matrices towards predicting the mechanical performance of such natural fiber composites. Cantilever beam and compression schemes were considered as two different mechanical loading conditions for structural applications of such composite materials. Finite element analysis was conducted to modeling the natural fiber composite materials. The interaction between the fibers and the matrices was considered as an interfacial friction force and was determined from experimental work by the pull out technique for each polymer and fiber type. Both polypropylene and polyethylene were considered as composite matrices. Olive and lemon leaf fibers were considered as reinforcements. Results have revealed that the deflection resistance of the natural fiber composites in cantilever beam was enhanced for several reinforcement conditions. The fiber reinforcement was capable of enhancing the mechanical performance of the polymers and was the best in case of 20 wt.% polypropylene/lemon composites due to better stress transfer within the composite. However, the 40 wt.% case was the worst in enhancing the mechanical performance in both cantilever beam and compression cases. The 30 wt.% of polyethylene/olive fiber was the best in reducing the deflection of the cantilever beam case. The prediction of mechanical performance of natural fiber composites via proper numerical analysis would enhance the process of selecting the appropriate polymer and fiber types. It can contribute finding the proper reinforcement conditions to enhance the mechanical performance of the natural fiber composites to expand their reliable implementations in more industrial applications.


2021 ◽  
Vol 31 (6) ◽  
pp. 317-323
Author(s):  
Abir Berkouk ◽  
Ahmed Meghezzi ◽  
Hamza Chelali ◽  
Mohamed Toufik Soltani

In order to improve the properties of unsaturated polyesters, this study discusses the possibilities of developing a natural waste, date palm leaf fiber DPLF, produced in the northern Algerian Sahara, associated with the polymer matrix of a thermosetting polyester resin UP. For this purpose, composite plates containing virgin fiber at rates of 6 and 10% were treated with an alkaline solution of 6% NaOH on the one hand, and a silane compound on the other. In this research, a mechanical study of strength and elongation at break was carried out. In addition, morphological behavior was followed by SEM scanning electron microscopy. ATG thermogravimetric analysis and energy flow were monitored by DSC differential scanning calorimetry. Also, a study of the water absorption capacity has been conducted. In addition, a dynamic mechanical analysis DMA was carried out. The findings of this study show that there is a favorable mechanical behavior for the composites containing the 6% and 10% DPLF fiber, with alkaline NaOH and Silane treatment. They also show that the chemical treatment with alkaline solution and silane gives composites certain thermal stability compared to those with untreated fiber. Findings also explore that the absorption of water by the various composites shows that the chemical treatment promotes some intermolecular associations with water. Findings also show that the storage modulus (E') increases when the composite contains 10% DPLF, treated and untreated, and the maximum value of the tangent moves towards the high temperature for the treated and untreated fiber composite.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sanjay Mavinkere Rangappa ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin ◽  
Mohammad Jawaid ◽  
Togay Ozbakkaloglu

AbstractIn this work, fillers of waste chicken feather and abundantly available lignocellulose Ceiba Pentandra bark fibers were used as reinforcement with Biopoxy matrix to produce the sustainable composites. The aim of this work was to evaluate the mechanical, thermal, dimensional stability, and morphological performance of waste chicken feather fiber/Ceiba Pentandra bark fiber filler as potential reinforcement in carbon fabric-layered bioepoxy hybrid composites intended for engineering applications. These composites were prepared by a simple, low cost and user-friendly fabrication methods. The mechanical (tensile, flexural, impact, hardness), dimensional stability, thermal stability, and morphological properties of composites were characterized. The Ceiba Pentandra bark fiber filler-reinforced carbon fabric-layered bioepoxy hybrid composites display better mechanical performance compared to chicken feather fiber/Ceiba Pentandra bark fiber reinforced carbon fabrics layered bioepoxy hybrid composites. The Scanning electron micrographs indicated that the composites exhibited good adhesion at the interface of the reinforcement material and matrix system. The thermogravimetric studies revealed that the composites possess multiple degradation steps, however, they are stable up to 300 °C. The thermos-mechanical studies showed good dimensional stability of the composites. Both studied composites display better thermal and mechanical performance compared to neat bioepoxy or non-bioepoxy thermosets and are suitable for semi-structural applications.


Author(s):  
Jayakrishna Kandasamy ◽  
A. Soundhar ◽  
M. Rajesh ◽  
D. Mallikarjuna Reddy ◽  
Vishesh Ranjan Kar

2013 ◽  
Vol 446-447 ◽  
pp. 18-21
Author(s):  
Xiang Hui Lu ◽  
Chen Liu ◽  
Jun Tian ◽  
Yang Li

The surface of aramid fiber is very smooth and chemical inert.The adhesiveness of aramid fiber with EPDM rubber materials is not good.So the tensile strength of EPDM rubber composite materials is influenced seriously.This paper modified the surface of aramid fiber with silicon coupling agentKH-550. We test the chang of fibers in surface with the ESCA,and the result is that content of carbon decreased ,while content of nitrogen and oxygen element increased.The activity of surface of fiber has been increased. Strength of composite materials increased from 2.58MPa to 3.22 MPa . The SEM photos of samples indicate that the weight of EPDM rubber on surface of EPDM rubber is more than untreated fiber composite materials .The treating effect on aramid fiber is best when the concentration of KH-550 is 5%,5hours.


2015 ◽  
Vol 719-720 ◽  
pp. 50-54
Author(s):  
Andressa Cecília Milanese ◽  
Kelly Cristina Coelho de Carvalho Benini ◽  
Maria Odila Hilário Cioffi ◽  
Herman Jacobus Cornelis Voorwald

Nowadays, polymeric composites reinforced with natural fibers are being considered in the civil engineering area. The use of polymeric composites to reinforce degraded timber structures can improve its behavior. Fibers with larger structural applications are glass and carbon but the use of natural fibers is an economical alternative and posses many advantages such as biodegradability, low cost and is derived from natural and renewable sources. Epoxy composite reinforced with sisal fabric was processed by resin transfer molding (RTM) at room temperature and this work studies thermal behavior and its respective mechanism of thermal decomposition. Samples of sisal fiber, epoxy resin and sisal/epoxy composite were characterized by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Thermogravimetric curves showed that sisal fibers can be used in manufacturing process where the processing temperature does not exceed 177°C and shown that the epoxy resin has the greatest stability material followed by sisal/epoxy composite.


2013 ◽  
Vol 821-822 ◽  
pp. 72-75
Author(s):  
Yun Hong Deng ◽  
Hong Ling Liu ◽  
Wei Dong Yu

The aim of this work was to research the effect of chemical treatment on the structure and property of sisal fiber. The changes of the surface morphology, chemical composition and wettability of different alkali concentration treated sisal fibers were studied using Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and Optical Contact Angle Meter (OCA). The results showed that the non-cellulosic materials were removed from fiber surface and many branches along the fibers were caused by high alkali concentration. Deconvolving spectra in OH stretching region exhibited the amount of hydrogen bonding decreased firstly and then increased with the alkali concentration increase. The effect of alkali treatment on the wettability of fibers was characterized by the contact angle analyses. The contact angle of fiber decreased gradually with the concentration increase.


2018 ◽  
Vol 5 (2) ◽  
pp. 94
Author(s):  
Yan Kondo ◽  
Muhammad Arsyad

The long-term goal of this research is to makecoconut fiber composite as one of the technical material, forbuilding material such as ceiling board or for automotivematerial such as bumper. While the specific target to be achievedin this research is to determine the influence of the concentrationof alkali solution on soaking coconut fiber to the content of lignin,cellulose, and hemicelluloses of coconut fiber. To achieve theobjectives and targets, the method of implementation of thisresearch is divided into 4 (four) steps, namely (1) preparation, (2)immersion, (3) testing, and (4) analysis. Coconut fiber is treatedby soaking coco fiber for 3 hours in sodium hydroxide (alkali)solution with concentrations of 5%, 10%, 15%, 20%, 25%, 30%,35%, 40%, 45%, 50%, and 55%. Once soaked, the coconut fiberis rinsed with aqua, then dried in an oven at 60°C for 4 hours.After that, a composition test with hydrolysis method todetermine the content of lignin, cellulose, and hemicelluloses.Each variable will be tested 3 (three) times. The data obtainedwill be analyzed statistically by applying descriptive method,where all data obtained will be presented in table, graphic, orimage form. Based on the tables, graphs, and images will beanalyzed and drawn conclusions. The results to be achieved inthis study is to determine the content of lignin, cellulose, andhemicelluloses coconut fiber due to alkali treatment for 3 hourswith a variable concentration of alkali solution. Based on theresults and discussion it can be concluded that soaking coconutfiber in alkaline solution degrades the content of hemicelluloses,cellulose and lignin.


2015 ◽  
Vol 1115 ◽  
pp. 349-352 ◽  
Author(s):  
Md. Masudur R. Abir ◽  
S.M. Kashif ◽  
Md. Abdur Razzak

To achieve sustainability in the composite industry, natural fibers must be able to replace synthetic fibers .In this work the tensile properties of sisal fibers were determined. The relationships between tensile strength, young modulus, failure to strain and gage length was studied. Also variation in tensile strength was quantified using statistical analysis. The relationship between Weibull statistics and gage length were also investigated. The strength of the sisal fiber obtained in this work was between 255-377 MPA and decreased with an increase in gage length. The Weibull modulus obtained was similar for all gage lengths and was around 2.5.


Sign in / Sign up

Export Citation Format

Share Document