3D Printable Resources for Engaging STEM Students in Laboratory Learning Activities and Outreach Programs: Inexpensive and User-Friendly Instrument Kits for Educators

MRS Advances ◽  
2018 ◽  
Vol 3 (49) ◽  
pp. 2937-2942 ◽  
Author(s):  
Lon A. Porter

ABSTRACTContinued advances in digital design software and 3D printing methods enable innovative approaches in the development of new educational tools for laboratory-based STEM (science, technology, engineering and mathematics) learning. The decreasing cost of 3D printing equipment and greater access provided by university fabrication centers afford unique opportunities for educators to transcend the limitations of conventional modes of student engagement with analytical instrumentation. This work shares successful efforts at Wabash College to integrate user-friendly and inexpensive 3D printed instruments kits into introductory STEM coursework. The laboratory kits and activities described provide new tools for engaging students in the exploration of instrument design and performance. These experiences provide effective ways to assist active-learners in discovering the technology and fundamental principles of analysis and deliberately confront the “black box” perception of instrumentation.

BioTechniques ◽  
2021 ◽  
Author(s):  
Vedika J Shenoy ◽  
Chelsea ER Edwards ◽  
Matthew E Helgeson ◽  
Megan T Valentine

3D printing holds potential as a faster, cheaper alternative compared with traditional photolithography for the fabrication of microfluidic devices by replica molding. However, the influence of printing resolution and quality on device design and performance has yet to receive detailed study. Here, we investigate the use of 3D-printed molds to create staggered herringbone mixers (SHMs) with feature sizes ranging from ∼100 to 500 μm. We provide guidelines for printer calibration to ensure accurate printing at these length scales and quantify the impacts of print variability on SHM performance. We show that SHMs produced by 3D printing generate well-mixed output streams across devices with variable heights and defects, demonstrating that 3D printing is suitable and advantageous for low-cost, high-throughput SHM manufacturing.


Author(s):  
Alex M. Moore ◽  
Nathan O. Rudig ◽  
Mark H. Ashcraft

This article reviews the topics of affect, motivation, working memory, and their relationships to mathematics learning and performance. The underlying factors of interest, motivation, self-efficacy, and maths anxiety, as well as an approach concerning people’s beliefs about fixed versus malleable intelligence, can be grouped into an approach and an avoidance constellation of attitudes and beliefs, with opposite relationships to outcome measures of learning and mastery in maths. This article then considers the research on working memory, showing it to be central to arithmetic and maths processing, and also the principle mental component being disrupted by affective and emotional reactions during problem solving. After discussing the disruptive effects of maths anxiety, choking under pressure, and stereotype threat, the article closes with a brief consideration of how these affective disruptions might be minimized or eliminated.


2021 ◽  
Vol 203 ◽  
pp. 109556
Author(s):  
Xuekun Li ◽  
Chao Wang ◽  
Chenchen Tian ◽  
Shuailei Fu ◽  
Yiming Rong ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4909
Author(s):  
Bartosz Bartoszewicz ◽  
Andrzej Lewenstam ◽  
Jan Migdalski

Intense interest in reference electrode design and fabrication has recently been enriched with the application of 3D printing of electrodes with salt-loaded PVC membranes. This type of material is attractive in sensor technology and is challenging to implement in 3D. In this report, several improvements and simplifications in the technology were focused on and supported by a fundamental electrochemical characterization.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sergey Ishutov ◽  
Kevin Hodder ◽  
Rick Chalaturnyk ◽  
Gonzalo Zambrano-Narvaez

3D printing developed as a prototyping method in the early 1980s, yet it is considered as a 21st century technology for transforming digital models into tangible objects. 3D printing has recently become a critical tool in the geoscience research, education, and technical communication due to the expansion of the market for 3D printers and materials. 3D printing changes the perception of how we interact with our data and how we explain our science to non-experts, researchers, educators, and stakeholders. Hence, a one-day short course was designed and delivered to a group of professors, students, postdoctoral fellows, and technical staff to present the application of 3D printing in teaching and communication concepts in the geoscience. This case study was aimed at evaluating how a diverse group of participants with geoscience and engineering background and no prior experience with computer-aided modeling (CAD) or 3D printing could understand the principles of different 3D printing techniques and apply these methods in their respective disciplines. In addition, the course evaluation questionnaire allowed us to assess human perception of tangible and digital models and to demonstrate the effectiveness of 3D printing in data communication. The course involved five modules: 1) an introduction lecture on the 3D printing methods and materials; 2) an individual CAD modeling exercise; 3) a tour to 3D printing facilities with hands-on experience on model processing; 4) a tour to experimentation facilities where 3D-printed models were tested; and 5) group activities based on the examples of how to apply 3D printing in the current or future geoscience research and teaching. The participants had a unique opportunity to create a digital design at the beginning of the course using CAD software, analyze it and 3D print the final model at the end of the course. While this course helped the students understand how rendering algorithms could be used as a learning aid, educators gained experience in rapid preparation of visual aids for teaching, and researchers gained skills on the integration of the digital datasets with 3D-printed models to support societal and technical objectives.


MRS Advances ◽  
2017 ◽  
Vol 2 (16) ◽  
pp. 913-920 ◽  
Author(s):  
Reece D. Gately ◽  
Stephen Beirne ◽  
Geoff Latimer ◽  
Matthew Shirlaw ◽  
Buyung Kosasih ◽  
...  

ABSTRACTWe demonstrate that Additive Manufacturing (3D printing) is a viable approach to rapidly prototype personalised fins for surfboards. Surfing is an iconic sport that is extremely popular in coastal regions around the world. We use computer aided design and 3D printing of a wide range of composite materials to print fins for surfboards, e.g. ABS, carbon fibre, fibre glass and amorphous thermoplastic poly(etherimide) resins. The mechanical characteristics of our 3D printed fins were found to be comparable to commercial fins. Computational fluid dynamics was employed to calculate longitudinal (drag) and tangential (turning) forces, which are important for surfboard maneuverability, stability and speed. A commercial tracking system was used to evaluate the performance of 3D printed fins under real-world conditions (i.e. surfing waves). These data showed that the surfing performance of surfboards with 3D printed fins is similar to that of surfboards with commercial fins.


2021 ◽  
Vol 255 ◽  
pp. 12009
Author(s):  
Bastián Carnero ◽  
Carmen Bao-Varela ◽  
Ana Isabel Gómez-Varela ◽  
María Teresa Flores-Arias

3D printing has revolutionized the field of microfluidics manufacturing by simplifying the typical processes offering a considerable accuracy and user-friendly procedures. For its part, laser ablation proves to be a versatile technology to perform detailed surface micropatterning. A hybrid technique that combines both technologies is proposed, employing them in their most suitable range of dimensions. This technique allows to manufacture accurate microfluidics devices as the one proposed: a microchannel, obtained using a stereolithographic printer, coupled with an array of microlenses, obtained by pulsed laser ablation of a 3D printed master.


Biomimetics ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 59
Author(s):  
Yomna K. Abdallah ◽  
Alberto T. Estévez

Construction materials and techniques have witnessed major advancements due to the application of digital tools in the design and fabrication processes, leading to a wide array of possibilities, especially in additive digital manufacturing tools and 3D printing techniques, scales, and materials. However, possibilities carry responsibilities with them and raise the question of the sustainability of 3D printing applications in the built environment in terms of material consumption and construction processes: how should one use digital design and 3D printing to achieve minimum material use, minimum production processes, and optimized application in the built environment? In this work, we propose an optimized formal design of “Biodigital Barcelona Clay Bricks” to achieve sustainability in the use of materials. These were achieved by using a bottom-up methodology of biolearning to extract the formal grammar of the bricks that is suitable for their various applications in the built environment as building units, thereby realizing the concept of formal physiology, as well as employing the concept of fractality or pixilation by using 3D printing to create the bricks as building units on an architectural scale. This enables the adoption of this method as an alternative construction procedure instead of conventional clay brick and full-scale 3D printing of architecture on a wider and more democratic scale, avoiding the high costs of 3D printing machines and lengthy processes of the one-step, 3D-printed, full-scale architecture, while also guaranteeing minimum material consumption and maximum forma–function coherency. The “Biodigital Barcelona Clay Bricks” were developed using Rhinoceros 3D and Grasshopper 3D + Plugins (Anemone and Kangaroo) and were 3D printed in clay.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 117 ◽  
Author(s):  
Sophia Economidou ◽  
Cristiane Pissinato Pere ◽  
Michael Okereke ◽  
Dennis Douroumis

3D printing has emerged as a powerful manufacturing technology and has attracted significant attention for the fabrication of microneedle (MN)-mediated transdermal systems. In this work, we describe an optimisation strategy for 3D-printed MNs, ranging from the design to the drug delivery stage. The key relationships between design and manufacturing parameters and quality and performance are systematically explored. The printing and post-printing set parameters were found to influence quality and material mechanical properties, respectively. It was demonstrated that the MN geometry affected piercing behaviour, fracture, and coating morphology. The delivery of insulin in porcine skin by inkjet-coated MNs was shown to be influenced by MN design.


Author(s):  
Roger Ball ◽  
Haining Wang ◽  
Yan Luximon

Product designers create the beautiful products we use every day from iPhones to eyewear. Every product aspires to mesh seamlessly with the human body. The wearable technology market is increasing the demand for more advanced, better fitting designs. As our technology moves closer to the body, the demand for better-fitted body products increases, and the challenge for designers grows. The scan and print method uses 3D scan technology, CAD design software, and 3D printing to create the next generation of better fitting wearable products with shorter lead-times and improved fit.


Sign in / Sign up

Export Citation Format

Share Document