Divacancy control of the balance between ion-beam-induced epitaxial cyrstallization and amorphization in silicon

1988 ◽  
Vol 3 (6) ◽  
pp. 1208-1211 ◽  
Author(s):  
J. Linnros ◽  
R. G. Elliman ◽  
W. L. Brown

The ion-bombardment-induced reversible movement of a planar amorphous/crystalline interface in silicon has been studied between 100 and 400 °C. The temperature dependence of the ion dose rate at which there is zero interface movement has an activation energy of 1.2 eV, the dissociation energy of divacancies. Scaling of this dose rate for different ion species exhibits a quadratic dependence on the density of displaced atoms in the collision cascade of individual ions, giving further evidence for divacancy control of the interface movement.

1986 ◽  
Vol 74 ◽  
Author(s):  
J. Linnros ◽  
R. G. Elliman ◽  
W. L. Brown

AbstractThe transition from ion induced epitaxial crystallization to planar amorphization of a preexisting amorphous layer in silicon has been investigated. The conditions for dynamic equilibrium at the transition were determined for different ion species as a function of dose rate and temperature. The critical dose rate for equilibrium varies exponentially with 1/T, exhibiting an activation energy of ∼1.2 eV. Furthermore, for different ions, the critical dose rate is inversely proportional to the square of the linear displacement density created by individual ions. This second order defect production process and the activation energy, which is characteristic of divacancy dissociation, suggest that the accumulation of divacancies at the amorphous/crystalline interface controls the balance between crystallization and amorphization.


1997 ◽  
Vol 469 ◽  
Author(s):  
J. Lalita ◽  
P. Pellegrino ◽  
A. Hallén ◽  
B. G. Svensson ◽  
N. Keskitalo ◽  
...  

ABSTRACTThe temperature dependence of the so-called reverse dose rate effect for generation of vacancy-type defects in silicon has been investigated using samples implanted with 1.3 MeV protons at temperatures between 70 and 300 K. The effect is found to involve a thermally controlled process which exhibits an activation energy of ∼0.065 eV, possibly associated with rapid migration of Si self-interstitials (I). Further, using a concept of dual Si ion-implants long range migration of I:s at room temperature has been studied. Annihilation of vacancy-type defects at a depth of ∼3 μm is obtained by injection of I:s from a shallow implant with sufficiently high dose.


1990 ◽  
Vol 201 ◽  
Author(s):  
Dougal McCulloch ◽  
Steven Prawer

AbstractThe electrical conductivity of ion beam irradiated Glassy Carbon has been investigated in the temperature range 100 to 300 K. Ion species used were C+ and N+ with doses between 1014 and 1018 ions/cm2. Ion beam irradiation was found to lower the conductivity of Glassy Carbon by up to six orders of magnitude. The temperature dependence of the conductivity in ion beam modified Glassy Carbon has been measured. The functional dependence was found to remain largely unchanged by ion irradiation despite the large overall decrease in the conductivity. The results are interpreted in terms of a model which includes a variable range hopping and strongly scattering metallic components.


1992 ◽  
Vol 279 ◽  
Author(s):  
Toshihiko Kanayama ◽  
Hisao Tanoue

ABSTRACTTo elucidate the mechanism of dose rate (DR) dependence of electrical activation, following two questions are investigated; why the amount of damage remaining after ion bombardment depends on DR and why it affects the electrical activation after high temperature annealing. From the observation that the DR dependence scales with temperature, the activation energy of recovery during ion irradiation has been estimated to be 0.75 and 1.0 eV. A higher DR suppresses the recovery and results in more damage, which in turn delays the electrical activation of implanted impurities.


1989 ◽  
Vol 147 ◽  
Author(s):  
P. P. Pronko ◽  
A. W. McCormick ◽  
D. B. Patrizio ◽  
A. K. Rai ◽  
R. M. Kolbas ◽  
...  

AbstractThis work is part of a study to understand the process by which energetic ion bombardment can be used to mix the chemical components of AlGaAs and GaAs superlattice (S/I.) layers of nominal 35 to 50Å thickness. Data reported here involve the retention and build-up of collision cascade damage in the S/I. and its relationship to amorphization and chemical mixing in these systems.


Author(s):  
A. K. Rai ◽  
R. S. Bhattacharya ◽  
M. H. Rashid

Ion beam mixing has recently been found to be an effective method of producing amorphous alloys in the binary metal systems where the two original constituent metals are of different crystal structure. The mechanism of ion beam mixing are not well understood yet. Several mechanisms have been proposed to account for the observed mixing phenomena. The first mechanism is enhanced diffusion due to defects created by the incoming ions. Second is the cascade mixing mechanism for which the kinematicel collisional models exist in the literature. Third mechanism is thermal spikes. In the present work we have studied the mixing efficiency and ion beam induced amorphisation of Ni-Ti system under high energy ion bombardment and the results are compared with collisional models. We have employed plan and x-sectional veiw TEM and RBS techniques in the present work.


2013 ◽  
Vol 113 (4) ◽  
pp. 044513 ◽  
Author(s):  
Aaesha Alnuaimi ◽  
Ammar Nayfeh ◽  
Victor Koldyaev

2001 ◽  
Vol 679 ◽  
Author(s):  
Stephen B. Cronin ◽  
Yu-Ming Lin ◽  
Oded Rabin ◽  
Marcie R. Black ◽  
Gene Dresselhaus ◽  
...  

ABSTRACTThe pressure filling of anodic alumina templates with molten bismuth has been used to synthesize single crystalline bismuth nanowires with diameters ranging from 7 to 200nm and lengths of 50μm. The nanowires are separated by dissolving the template, and electrodes are affixed to single Bi nanowires on Si substrates. A focused ion beam (FIB) technique is used first to sputter off the oxide from the nanowires with a Ga ion beam and then to deposit Pt without breaking vacuum. The resistivity of a 200nm diameter Bi nanowire is found to be only slightly greater than the bulk value, while preliminary measurements indicate that the resistivity of a 100nm diameter nanowire is significantly larger than bulk. The temperature dependence of the resistivity of a 100nm nanowire is modeled by considering the temperature dependent band parameters and the quantized band structure of the nanowires. This theoretical model is consistent with the experimental results.


1992 ◽  
Vol 279 ◽  
Author(s):  
Chen Youshan ◽  
Sun Yilin ◽  
Zhang Fumin ◽  
Mou Haichuan ◽  
Tao Wei ◽  
...  

Ion beam controlled deposition (IBCD) or ion beam assisted deposition (IB AD) of Ti(C,N,O) films has been investigated much in the last decade for both the advantage of this advanced technology and the promising properties of such materials. Ti(C,N,O) films are various solid solutions of interstitial compounds TiC, TiN and TiO of F.C.C structure with lattice constants lying between the values of the pure compounds. Some content of oxygen improves their wear resistance due to the lower fn;e enthalpies of such films in comparison with pure TiC and TiN films [1]. Many so-synthesizcd titanium carbide and titanium nitride films reported in published papers were actually of this sort as they often had more or less oxygen content from residual gas in vacuum. A number of papers were contributed to depict the texture and composition dependence of film on the arrival ratio of assisting ions versus deposited atoms (AR) as well as their mechanical properties [2–6]. However, the film formation mechanism in IBCD isn't quite clear yet, especially for cases with assisting ion energy of several to tens of keV. During a course to synthesize Ti(C,N,O) films by IBCD with the two beam technique, datum were accumulated. Based on a part of it, a previous paper on ion beam governed preferential growth in IBCD has been published [7]. This paper was aimed to search for the origin of ion bombardment effect on film hardness.


Author(s):  
Zoltán Balogh-Michels ◽  
Igor Stevanovic ◽  
Aurelio Borzi ◽  
Andreas Bächli ◽  
Daniel Schachtler ◽  
...  

AbstractIn this work, we present our results about the thermal crystallization of ion beam sputtered hafnia on 0001 SiO2 substrates and its effect on the laser-induced damage threshold (LIDT). The crystallization process was studied using in-situ X-ray diffractometry. We determined an activation energy for crystallization of 2.6 ± 0.5 eV. It was found that the growth of the crystallites follows a two-dimensional growth mode. This, in combination with the high activation energy, leads to an apparent layer thickness-dependent crystallization temperature. LIDT measurements @355 nm on thermally treated 3 quarter-wave thick hafnia layers show a decrement of the 0% LIDT for 1 h @773 K treatment. Thermal treatment for 5 h leads to a significant increment of the LIDT values.


Sign in / Sign up

Export Citation Format

Share Document