Temperature Dependence of DC Conductivity in Ion-Beam-Irradiated Glassy Carbon

1990 ◽  
Vol 201 ◽  
Author(s):  
Dougal McCulloch ◽  
Steven Prawer

AbstractThe electrical conductivity of ion beam irradiated Glassy Carbon has been investigated in the temperature range 100 to 300 K. Ion species used were C+ and N+ with doses between 1014 and 1018 ions/cm2. Ion beam irradiation was found to lower the conductivity of Glassy Carbon by up to six orders of magnitude. The temperature dependence of the conductivity in ion beam modified Glassy Carbon has been measured. The functional dependence was found to remain largely unchanged by ion irradiation despite the large overall decrease in the conductivity. The results are interpreted in terms of a model which includes a variable range hopping and strongly scattering metallic components.

1983 ◽  
Vol 27 ◽  
Author(s):  
T. Venkatesan ◽  
R. C. Dynes ◽  
B. Wilkens ◽  
A. E. White ◽  
J. M. Gibson ◽  
...  

ABSTRACTThe electrical properties of pyrolyzed polymers have been studied recently.1,2 It has been shown that organic, polymeric3 and non-polymeric4 films can be made conductive (ρ ~ 10−3Ωcm) by ion beam irradiation. Common to all of the films was the presence of carbon as a constituent element and both pyrolysis and ion beam irradiation3 was shown to increase the relative carbon content of the films. The ion beam irradiated organic films 3,4 exhibited a temperature dependence of their resistivity of the form ρ(T) = ρ∞e−(TЛ)*, where ρ is the ion-induced resistivity, ρ∞ and T0 are constants and T is the temperature. At very high doses of irradiation (1017cm−2Ar+@ 2MeV) the film resistivity was temperature independent. Very similar transport properties were observed in the pyrolyzed polymers1 as well, though the lowest resistivities achieved were higher than the resistivity values observed in the ion irradiated3 polymer films. In both the pyrolysis and ion-irradiation experiments the temperature dependence has been explained by a model due to Sheng and Abeles,5 which involves charge transport by hopping between conducting islands embedded in an insulating matrix. Such striking similarities between two distinctly different modes of energy deposition in the films, prompted us to compare the effects of pyrolysis and ion irradiation in different carbon containing films. We compared both a polymer (HPR-204°) and a film of electron beam evaporated carbon film. While in the former case one would observe chemical degradation as well as structural modification, by studying pure carbon films the physical nature of the processes could be clarified. We report metallic carrier densities in both films and evidence for significant structural rearrangement. We conclude that pyrolysis and ion beam irradiation have similar effects on both polymer and carbon films.


Author(s):  
SHEHLA HONEY ◽  
JAMIL ASIM ◽  
KAVIYARASU KASINATHAN ◽  
MAAZA MALIK ◽  
SHAHZAD NASEEM ◽  
...  

Electrical conductivity and optical transmittance of nickel nanowire (Ni-NW) networks are reported in this work. The Ni-NWs were irradiated with 3.5, 3.8 and 4.11[Formula: see text]MeV proton (H[Formula: see text]) ions at room temperature. The electrical conductivity of Ni-NW networks was observed to increase with the increase in beam energies of H[Formula: see text] ions. With the increase in ions beam energies, electrical conductivity increases and this may be attributed to a reduction in the wire–wire point contact resistance due to the irradiation-induced welding of NWs. Welding is probably initiated due to H[Formula: see text] ion-irradiation induced heating effect that also improved the crystalline quality of the NWs. After ion beam irradiation, localized heat is generated in the NWs due to ionization which was also verified by SRIM simulation. Optical transmittance is increased with increase in the energy of H[Formula: see text] ions. The Ni-NW networks subjected to an ion beam irradiation to observe corresponding changes in electrical conductivity and optical transparencies are promising for various nanotechnological applications, such as highly transparent and conducting electrodes.


2007 ◽  
Vol 558-559 ◽  
pp. 1359-1362 ◽  
Author(s):  
Hiroyuki Tanaka ◽  
Shunichiro Tanaka

Cu2O conical micron-scale protrusions have been grown on a preoxidized Cu surface by the Ar ion beam irradiation at 9 kV for 5-20 min in the low vacuum. This Ar ion irradiation is based on the ‘Transcription Method’ which has been originated by B.-S. Xu and S.-I. Tanaka in 1996 to form nanoparticles. Ar ion irradiation induced needle-like nanostructures composed of Cu2O and CuO which were randomly nucleated on Cu surface by the oxidation at 623 K for 10 min in the air. The obtained Cu2O conical protrusions have a controllable length of up to 14.6 μm with diameter in the range of 0.8 μm by changing the Ar ion irradiation angle to the surface. The mechanism of the formation of the conical protrusions is proposed that Cu atoms on the Cu surface activated and sputtered by the Ar ion irradiation diffuse on the surface of needle-like oxide as nuclei along the Ar ion track and react with residual oxygen atoms to grow the conical Cu2O protrusions.


2000 ◽  
Vol 647 ◽  
Author(s):  
Raúl A. Enrique ◽  
Pascal Bellon

AbstractIon-beam irradiation can be used as a processing tool to synthesize metastable materials. A particular case is the preparation of solid solutions from immiscible alloys, which have been achieved for a whole range of systems. In this process, enhanced solute concentration is obtained through the local mixing induced by each irradiation event, which if occurring at a high enough frequency, can outweigh demixing by thermal diffusion. The resulting microstructure forms in far from equilibrium conditions, and theoretical results for these kind of driven alloys have shown that novel microstructures exhibiting self-organization can develop. To test these predictions, we prepare Ag-Cu multilayered thin films that we subject to 1 MeV Kr+-ion irradiation at temperatures ranging from room temperature to 225 °C, and characterize the specimens by x-ray diffraction, TEM and STEM. We observe two different phenomena occurring at different length scales: On the one hand, regardless of the irradiation temperature, grains grow under irradiation until reaching a size limited by film thickness (~200 nm). On the other hand, the distribution of species inside the grains is greatly affected by the irradiation temperature. At intermediate temperatures, a semi-coherent decomposition is observed at a nanometer scale. This nanometer-scale decomposition phenomenon appears as an evidence of patterning, and thus confirms on the possibility of using ion-beam irradiation as a route to synthesize nanostructured materials with novel magnetic and optical properties.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 196
Author(s):  
Xin Wu ◽  
Ruxue Yang ◽  
Xiyue Chen ◽  
Wei Liu

Nanopore structure presents great application potential especially in the area of biosensing. The two-dimensional (2D) vdW heterostructure nanopore shows unique features, while research around its fabrication is very limited. This paper proposes for the first time the use of ion beam irradiation for creating nanopore structure in 2D vdW graphene-MoS2 heterostructures. The formation process of the heterostructure nanopore is discussed first. Then, the influence of ion irradiation parameters (ion energy and ion dose) is illustrated, based on which the optimal irradiation parameters are derived. In particular, the effect of stacking order of the heterostructure 2D layers on the induced phenomena and optimal parameters are taken into consideration. Finally, uniaxial tensile tests are conducted by taking the effect of irradiation parameters, nanopore size and stacking order into account to demonstrate the mechanical performance of the heterostructure for use under a loading condition. The results would be meaningful for expanding the applications of heterostructure nanopore structure, and can arouse more research interest in this area.


2020 ◽  
Vol 8 (29) ◽  
pp. 9923-9930 ◽  
Author(s):  
Milan Palei ◽  
M. Motapothula ◽  
Aniruddha Ray ◽  
Ahmed L. Abdelhady ◽  
Luca Lanzano ◽  
...  

Using MeV ion irradiation, a PL enhancement effect of MAPbBr3 single crystals is demonstrated.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Shu-Yang Wang ◽  
Yong-Heng Bo ◽  
Xiang Zhou ◽  
Ji-Hong Chen ◽  
Wen-Jian Li ◽  
...  

Heavy-ion irradiation technology has advantages over traditional methods of mutagenesis. Heavy-ion irradiation improves the mutation rate, broadens the mutation spectrum, and shortens the breeding cycle. However, few data are currently available regarding its effect onStreptomyces avermitilismorphology and productivity. In this study, the influence of heavy-ion irradiation onS. avermitiliswhen cultivated in approximately 10 L stirred-tank bioreactors was investigated. The specific productivity of the avermectin (AVM) B1a-producing mutantS. avermitilis147-G58 increased notably, from 3885 to 5446 μg/mL, approximately 1.6-fold, compared to the original strain. The mycelial morphology of the mutant fermentation processes was microscopically examined. Additionally, protein and metabolite identification was performed by using SDS-PAGE, 2- and 3-dimensional electrophoresis (2DE and 3DE). The results showed that negative regulation gene deletion of mutants led to metabolic process upregulating expression of protein and improving the productivity of an avermectin B1a. The results showed that the heavy-ion beam irradiation dose that corresponded to optimal production was well over the standard dose, at approximately 80 Gy at 220 AMeV (depending on the strain). This study provides reliable data and a feasible method for increasing AVM productivity in industrial processes.


1983 ◽  
Vol 27 ◽  
Author(s):  
G. J. Clark ◽  
J. E. E. Baglin ◽  
F. M. d'Heurle ◽  
C. W. White ◽  
G. Farlow ◽  
...  

ABSTRACTIon beam irradiation of metal film/SiO2 interfaces causes reactions when the metals are those chemically capable of reducing SiO2. These reactions result in the formation of metal rich silicides in the region of the interface and an increase in the adhesion of the film to the substrate. For other nonreactive metals ion irradiation causes lateral transport of metal atoms resulting in the formation of an island structure. The results obtained by ion irradiation are compared with previous studies of high temperature thermal processing of metal films on SiO2.


2018 ◽  
Vol 27 (3) ◽  
Author(s):  
Hamid Khazaei ◽  
Pirjo S.A. Mäkelä ◽  
Frederick L. Stoddard

Ion beam irradiation is a potential tool for inducing novel mutations in plants. We chose three crop species (rye, linseed, and faba bean) to determine the potential of nitrogen ion beam irradiation for inducing mutations. We tested ion beam irradiation with nitrogen ions at six different fluencies (5×105, 1×106, 5×106, 1×107, 5×107, and 1×108 N-ion cm-2) on dry grains. The three studied crop species had different sensitivities to the irradiation. Increased doses of ion irradiation had more effect on survival than on germination. Rye seedlings had the lowest survival rate at high doses of irradiation and significantly higher off-type plant phenotypes than the other two species. In M1 seedlings, stunted growth, failure to complete the plant life cycle and chlorophyll mutants were observed in all three species. Terminal-inflorescence mutations and sectional chimeras in faba bean were observed in the M2 generation. We conclude that ion beam irradiation is an effective tool for mutation breeding of diverse crop species when the appropriate dose is defined.


Sign in / Sign up

Export Citation Format

Share Document