Initial stage Fe-clustering in the Au–Fe spin-glass system

1992 ◽  
Vol 7 (2) ◽  
pp. 321-328 ◽  
Author(s):  
Chen-Chia Chou ◽  
C.M. Wayman

Aging experiments were conducted to study initial state Fe-clustering in Au–Fe alloys with Fe content from 10.7 to 33%. Information derived from experiments using transmission electron microscopy, electron diffraction, and high resolution electron microscopy suggests the coexistence of short-range-order and Fe-clusters. At early stages of aging, lobe-like and/or rod-shaped strain contrast images, identified as clusters, were revealed after specimens were further cleaned by an ion-miller. The (11/20) special point diffuse reflections were prominent in the as-quenched condition and/or early stage aging, and the intensities decrease gradually as aging proceeds. After a certain period, (11/20) diffuse reflections disappear but strain contrast images still remain similar. This suggests that the strain contrast images are not related to the (11/20) diffuse reflections. The cluster characteristics of Au–Fe alloys are differentiated from those of Al–Cu and Cu–Be based upon theoretical calculations.

1990 ◽  
Vol 205 ◽  
Author(s):  
Chen-Chia Chou ◽  
F.-R. Chen ◽  
C. M. Wayman

AbstractAs an “archtypal” spin-glass system, the local atomic arrangement in Au-Fe alloys is still a controversial subject. In the present experiment, Au-Fe alloys with Fe content from 10.7 to 33% were studied as to microstructure evolution, through various transmission electron microscopic techniques. Information derived from aging experiments using real and reciprocal spaces appears to suggest the coexistence of short-range-order and Fe-clusters. At early stages of aging, lobe-like and/or rod-shaped strain contrast images, identified as clusters, were revealed after specimens were further cleaned by an ion-miller. The (1 1/2 0) special point diffuse reflections were prominent in the as-quenched condition and/or early stage aging, and the intensifies decrease gradually as aging proceeds. After a certain period, (1 1/2 0) diffuse reflections disappear but strain contrast images still remain similar. This suggests that the strain contrast images are not related to the (1 1/2 0) diffuse reflections. High resolution electron microscopy was also employed. The results are consistent with the arguments derived from aging experiments.


1987 ◽  
Vol 94 ◽  
Author(s):  
Y. Kouh Simpson ◽  
C. B. Carter

ABSTRACTThe initial stage of topotactic growth of Ni-Al spinel into Al2O3 has been examined using transmission electron microscopy. A new experimental approach to the study of solid-state reactions, which may be adapted for in-situ experiments for low-temperature systems, has been used in this study. In its present form, the technique involves heating a thin film of one oxide in the presence of a vapor of the second oxide. In the study of the growth characteristics of Ni-Al spinel phase, the orientation of the Al2O3 substrate has been found to influence greatly both the structural and morphological aspects of the spinel growth. In particular, the topotactic relationship between the spinel and the alumina are very different for (0001) and {1120} substrate orientations. The very early stage of the kinetics of the spinel growth, in which the length and the width of the spinel particles are only a few hundred angstroms, is illustrated with the results obtained from the re-heating experiments. The structure of the spinel-alumina interface has also been studied using high-resolution electron microscopy. These results are discussed in relation to the different models proposed for the spinel-alumina phase transformation.


2001 ◽  
Vol 16 (3) ◽  
pp. 803-805 ◽  
Author(s):  
Zaoli Zhang ◽  
Lin Guo ◽  
Wendong Wang

Antimony oxide nanoparticles were synthesized in the presence of the polyvinyl alcohol in water solution through the reaction between SbCl3 and NaOH. The size of the particle ranges from 10 to 80 nm, and the largest one can even reach 200 nm, which may begin to grow in the initial stage of the reflux. Transmission electron microscopy and high-resolution electron microscopy (HREM) were used to characterize the microstructure of these nanoparticles. Using silicon single crystals as internal standards, the polycrystalline diffraction pattern analysis shows only presence of cubic Sb2O3 phase. The bright-field micrograph displays that the particles may have various polyhedral configurations. HREM results show that the particles are crystallographically perfect. Moreover, the formation mechanism of nanoparticles is discussed.


Author(s):  
K. J. Morrissey

Grain boundaries and interfaces play an important role in determining both physical and mechanical properties of polycrystalline materials. To understand how the structure of interfaces can be controlled to optimize properties, it is necessary to understand and be able to predict their crystal chemistry. Transmission electron microscopy (TEM), analytical electron microscopy (AEM,), and high resolution electron microscopy (HREM) are essential tools for the characterization of the different types of interfaces which exist in ceramic systems. The purpose of this paper is to illustrate some specific areas in which understanding interface structure is important. Interfaces in sintered bodies, materials produced through phase transformation and electronic packaging are discussed.


Author(s):  
Jan-Olle Malm ◽  
Jan-Olov Bovin

Understanding of catalytic processes requires detailed knowledge of the catalyst. As heterogeneous catalysis is a surface phenomena the understanding of the atomic surface structure of both the active material and the support material is of utmost importance. This work is a high resolution electron microscopy (HREM) study of different phases found in a used automobile catalytic converter.The high resolution micrographs were obtained with a JEM-4000EX working with a structural resolution better than 0.17 nm and equipped with a Gatan 622 TV-camera with an image intensifier. Some work (e.g. EDS-analysis and diffraction) was done with a JEM-2000FX equipped with a Link AN10000 EDX spectrometer. The catalytic converter in this study has been used under normal driving conditions for several years and has also been poisoned by using leaded fuel. To prepare the sample, parts of the monolith were crushed, dispersed in methanol and a drop of the dispersion was placed on the holey carbon grid.


2001 ◽  
Vol 16 (8) ◽  
pp. 2189-2191 ◽  
Author(s):  
Guo-Dong Zhan ◽  
Mamoru Mitomo ◽  
Young-Wook Kim ◽  
Rong-Jun Xie ◽  
Amiya K Mukherjee

Using a pure α–SiC starting powder and an oxynitride glass composition from the Y–Mg–Si–Al–O–N system as a sintering additive, a powder mixture was hot-pressed at 1850 °C for 1 h under a pressure of 20 MPa and further annealed at 2000 °C for 4 h in a nitrogen atmosphere of 0.1 MPa. High-resolution electron microscopy and x-ray diffraction studies confirmed that a small amount of β–SiC was observed in the liquid-phase-sintered α–SiC with this oxynitride glass, indicating stability of β–SiC even at high annealing temperature, due to the nitrogen-containing liquid phase.


1999 ◽  
Vol 571 ◽  
Author(s):  
N. D. Zakharov ◽  
P. Werner ◽  
V. M. Ustinov ◽  
A.R. Kovsh ◽  
G. E. Cirlin ◽  
...  

ABSTRACTQuantum dot structures containing 2 and 7 layers of small coherent InAs clusters embedded into a Si single crystal matrix were grown by MBE. The structure of these clusters was investigated by high resolution transmission electron microscopy. The crystallographic quality of the structure severely depends on the substrate temperature, growth sequence, and the geometrical parameters of the sample. The investigation demonstrates that Si can incorporate a limited volume of InAs in a form of small coherent clusters about 3 nm in diameter. If the deposited InAs layer exceeds a critical thickness, large dislocated InAs precipitates are formed during Si overgrowth accumulating the excess of InAs.


1980 ◽  
Vol 2 ◽  
Author(s):  
Fernando A. Ponce

ABSTRACTThe structure of the silicon-sapphire interface of CVD silicon on a (1102) sapphire substrate has been studied in crøss section by high resolution transmission electron microscopy. Multibeam images of the interface region have been obtained where both the silicon and sapphire lattices are directly resolved. The interface is observed to be planar and abrupt to the instrument resolution limit of 3 Å. No interfacial phase is evident. Defects are inhomogeneously distributed at the interface: relatively defect-free regions are observed in the silicon layer in addition to regions with high concentration of defects.


1997 ◽  
Vol 3 (S2) ◽  
pp. 673-674
Author(s):  
M. Rühle ◽  
T. Wagner ◽  
S. Bernath ◽  
J. Plitzko ◽  
C. Scheu ◽  
...  

Heterophase boundaries play an important role in advanced materials since those materials often comprise different components. The properties of the materials depend strongly on the properties of the interface between the components. Thus, it is important to investigate the stability of the microstructure with respect to annealing at elevated temperatures. In this paper results will be presented on the structure and composition of the interfaces between Cu and (α -Al2O3. The interfaces were processed either by growing a thin Cu overlayer on α- Al2O3 in a molecular beam epitaxy (MBE) system or by diffusion bonding bulk crystals of the two constituents in an UHV chamber. To improve the adhesion of Cu to α -Al2O3 ultrathin Ti interlayers were deposited between Cu and α - Al2O3.Interfaces were characterized by different transmission electron microscopy (TEM) techniques. Quantitative high-resolution electron microscopy (QHRTEM) allows the determination of the structure (coordinates of atoms) while analytical electron microscopy (AEM) allows the determination of the composition with high spatial resolution.


1998 ◽  
Vol 553 ◽  
Author(s):  
R. Lück ◽  
M. Scheffer ◽  
T. Gödecke ◽  
S. Ritschj ◽  
C. Beelif

AbstractAn extensive investigation into the At-AICo-AlNi ternary subsystem is presented. Observations have used the techniques of differential thermal analysis, magnetothermal analysis, dilatometry, metallography, X-ray diffraction, transmission electron microscopy, and high-resolution electron microscopy. Representative graphic documentation, as liquidus projection surface, isothermal sections, temperature-concentration section, and reaction scheme are presented. 11 phases from the binaries Al-Co and Al-Ni and the three ternary phases Y2 (Co2NiAl9), X and the decagonal phase D were found at room temperature. The decagonal phase is formed from the melt peritectically via a critical tie line and its primary formation area dominates at the liquidus projection surface. 45 three-phase regions are present according to the reaction scheme.Several phase variants in the area of the decagonal phase were detected by transmission electron microscopy. Phase fields of the variants were determined from samples quenched from their respective temperatures. In-situ experiments on transformations of variants were performed by dilatometric measurements. The subdivision of the D phase area into the fields of the variants is discussed.


Sign in / Sign up

Export Citation Format

Share Document